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Abstract

Temporal Evolution of extreme temperature e�ects on agriculture is important for understanding

adaptation to climate change but has been insu�ciently studied. This study examines the time-

varying impacts of extreme temperatures on Chinese agriculture over 1981 to 2010. We estimate

a period-speci�c panel regression model using nationwide county-level agriculture production data

combined with �ne-scale meteorological data. There are three primary �ndings. First, crop yields

have become more heat-resilient over time. The impact of a daily exposure to extreme temperatures

on corn and soybean yields in the post-1996 period is 40% to 50% less than that in the pre-1996

period. Second, irrigation is the most e�ective adaptive input among the four examined. Third,

the decline in the temperature sensitivity of crop yields over time has mainly occurred in counties

with irrigation expansion. The estimates of the marginal adaptation e�ect of irrigation and average

irrigation expansion suggest that expanding irrigation coverage over time accounts for 25% to 30% of

the decline in the impacts of extreme temperatures.
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1 Introduction

Agriculture is one of the most vulnerable sectors to climate change. The impacts of climate change

on agriculture have important implications for food security and relevant well-beings, especially in

developing countries in which agriculture is a fundamental source of income. Although literature accu-

mulates on the link between weather and agricultural outcomes, studies of the evolution of agricultural

sensitivity to temperature extremes remain limited (Mendelsohn et al., 1994; Deschenes and Green-

stone, 2007; Schlenker and Roberts, 2009; Welch et al., 2010; Fisher et al., 2012; Roberts et al., 2012;

Lobell et al., 2013; Chen et al., 2016; Burke and Emerick, 2016; Zhang et al., 2017; Chen and Gong,

2020). Understanding the temporal evolution of relationship between temperature and agricultural

outcomes helps develop reliable estimates of the costs of climate change and identify solutions that

moderate the risks imposed by such change.

Crop yield�the amount of crop production per unit of land area�determines grain supply in the

long run, given we can only claim a limited amount of farmland from nature. This study examines

the temporal evolution of the temperature-yield relationship in the world's most populous country

and provides evidence of a signi�cant decline in extreme temperature impacts on yields that is larger

than the those in the literature (Schlenker and Roberts, 2009; Roberts and Schlenker, 2010; Bleakley

and Hong, 2017; Ortiz-Bobea et al., 2018). The decline in extreme temperature impacts on yields

implies the e�ect of adaptation to extreme weather conditions. According to the Intergovernmental

Panel on Climate Change (IPCC,2007), adaptation generally refers to adjustments by economic agents

in response to actual or expected change of weather conditions, which moderates harm or exploits

bene�cial opportunities.1 The essence of adaptation is adjustment of inputs.

Since 1980s, as part of the modernization campaign initiated by China's central government, farm-

ing methods in Chinese agriculture have been improved through mechanization, irrigation expansion

and fertilizer use (OECD, 2012). Especially after 1996, a number of agricultural policies are collectively

designed to achieve a food self-su�ciency objective set in 1996 (The State Council of P.R. China, 1996).

Agricultural subsidy aim to provide farmers with an incentive to replace traditional labor-intensive and

low-productivity methods of farming with modern mechanized production systems, which will increase

productivity and reduce production vulnerability to extreme heat (Huang et al., 2013). We empirically

�nd that the decline in extreme temperature impacts is signi�cantly associated with the expansion of

irrigation coverage since 1996, suggesting that input-driven decline in temperature sensitivity across

time periods can be used to infer the e�ect of adaptation to extreme temperatures.

1 The formal de�nition of adaptation by the Intergovernmental Panel on Climate Change is adjustment in natural or
human systems in response to actual or expected climatic stimuli or their e�ects, which moderates harm or exploits
bene�cial opportunities" (2007,6). However, this paper focuses on adaptation to temperature extremes. To reconcile the
di�erence in the subject matter, we de�ne adaptation as adjustment to a change of weather conditions including a new
long-lasting climate normal and a new temporary weather condition. Extreme temperatures are predicted to be more
frequent under climate change. This study, by focusing on adaptation to temperature extremes, can also shed light on
the potential adaptive capacity for long-lasting climate change.
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When the timing of input adjustment is taken into consideration, adaptation can be classi�ed as ex

ante adaptation that is taken before weather realizes and ex post adaptation that is taken after weather

realizes (Shrader,2018). This paper focuses on the e�ect of an extreme temperature shock that realizes

within growing seasons of crops. Given ex ante inputs such as seed variety and irrigation infrastructure

that are determined before the growing season, farmers can adjust inputs in response to the actual

weather shock such as spraying water on crops to cool the canopy temperature. Therefore, weather

realization identi�es a combination of the direct impact of extreme temperatures without adaptation

and ex post adaptation e�ect conditioning on ex ante adaptation, which decreases the estimated size

of the direct e�ect.

This research is one of the most comprehensive studies of the temporal evolution of temperature-

yield relationship in China using thirty-year (1981-2010) county-level agriculture production data com-

bined with �ne-scale meteorological data. We focus on the yields of corn and soybean, two major grain

crops accounting for more than 20% of cropland in China that are important raw materials for edible oil

making and livestock feed. Over 1981 to 2010, China experienced noticeable climate change. Annual

average temperature increased by 0.02-0.03 ◦C annually in these three decades based on a calculation

using our meteorological data. As China has the world's largest agricultural economy and is a major

importer of feed grains (FAO, 2012), adaptation e�ect implied by the decline in temperature sensitivity

is crucial for evaluating the risks imposed to domestic food security and the global grain market by

climate change.

The empirical analysis is divided into three parts. The �rst part documents the decline in the

extreme temperature impacts on crop yields by estimating a period-speci�c panel �xed e�ect model.

We estimate the period-speci�c extreme temperature e�ects on crop yields and conduct an F test to

examine whether the estimated extreme temperature e�ects are signi�cantly di�erent across periods in

a nested model. We primarily �nd the impact of daily exposure to extreme temperature (measured by

degree days above an endogenously-selected temperature threshold) for corn and soybean production

in 1996 to 2010 is 40-50% less than that in the period of 1981 to 1995. This results in a loss reduction

of national aggregate corn production by about 155,000 tons and of soybean production by about

11,000 tons compared to the scenario in which pre-1996 extreme temperature impacts on crop yields

prevailed.2 A secondary result shows that yield loss of the two crops due to temperature extremes

in the southern regions has declined by a larger percentage than that of the northern regions, which

is consistent with the idea that hotter places adapt to temperature extremes better than cooler ones.

The estimation of extreme temperature e�ects relies on controlling for a full set of �xed e�ects and

county-speci�c time trends, which are added to account for confounding adaptation mechanisms other

than ex post adjustment of input quantities.

2 In Section 6.1.1, we provide detailed numerical derivation of the yield loss reduction.
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The second part of the analysis aims to examine potential adaptation mechanisms that may mute

the relationship between crop yields and high temperatures by estimating marginal adaptation e�ects

of each input. We focus on four inputs�irrigation, fertilizer, agricultural machinery and electricity. We

estimate an augmented panel model with temperature-input interactions where the temporal change in

inputs is interacted with all the temperature variables. The empirical results point to irrigation as the

only e�ective adaptive input. Irrigation expansion is associated with a signi�cant reduction in yield

losses due to extremely high temperatures. By contrast, we �nd that the use of fertilizer, agricultural

machinery and electricity are not statistically related to reductions in heat-related yield losses. Due

to data limitation, instead of observing water used for irrigation, we observe irrigation coverage or the

proportion of arable land e�ectively irrigated, which serves as a measure about irrigation capital stock

that is determined by farmers ex ante. Based on the reasonable assumption that irrigation capital

(e.g. pipelines, drainage ditches, wells and dams) facilitates the ex post use of irrigation water, we use

irrigation coverage as a proxy for the quantity of irrigation water.

Quasi-experimental variation in irrigation is not available, imposing an upward bias on the estima-

tion of the irrigation e�ect if irrigation co-varies with other temperature-directed adaptation measures

(e.g. heat-resilient seed varieties). Three additional results lend credibility to the �ndings on the

adaptation e�ects of irrigation. First, the temporal change in irrigation is negatively correlated with

the change in extreme temperature variables, suggesting that the estimation of the irrigation e�ect

may be downward biased, which is a less severe problem than the e�ect being upward biased. Second,

irrigation does not a�ect the yield consequences of exposure to low temperatures below a threshold,

suggesting that irrigation expansion is not coincident with factors that determine the overall yields.

Third, the estimation of irrigation e�ect is robust to a model including parametric proxies for con-

founding factors. Temperature-by-year trends which are generated by the interactions of the year with

all the temperature variables, allows for the possibility that the e�ects of temperature extremes on crop

yields change over time for reasons co-varying with irrigation. The interactions between temperature

change and the change of economic development indicators such as GDP and cargo quantities by road

(a proxy for road kilometers) control for other time-varying observables in parallel with input adoption.

But we cannot rule out all sources of bias. Therefore, we only claim the association between irrigation

expansion and temperature sensitivity reduction as suggestive evidence for the adaptation e�ect of

irrigation.

Following the second part pointing to irrigation as the central adaptive input, the third part of

the empirical analysis provides evidence of the mechanisms for adaptation through the change of

irrigation. The role of irrigation in attenuation of temperature sensitivity can be quanti�ed by the

heterogeneous adaptation e�ect by the extent of temporal change in irrigation coverage.3 We create

3As 1996 serves as the dividing year of the whole period (1981 to 2010), the irrigation variation over time periods is
calculated by the di�erence between the 1981-1995 average of irrigation and 1996-2010 average.
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a category variable specifying whether a county has experienced increases or decreases in irrigation

coverage and interact the category variable with the temperature and precipitation variables in the

baseline period-speci�c panel model. Only counties with an increase in irrigation coverage experienced

a signi�cant decline in agricultural sensitivity to extreme temperatures, implying that irrigation may

be one of the mechanisms for the evolving e�ects of temperature extremes on yields. The estimated

marginal adaptation e�ect of irrigation and average size of irrigation expansion suggests that expansion

of irrigation coverage over time accounts for 25% to 30% of the decline in extreme temperature impacts.

We also �nd that only yields in counties with an increase in irrigation coverage above 9.5 percentage

points which is the 75th percentile of the distribution of the change in irrigation coverage, became less

sensitive to excessive precipitation (measured by precipitation above a threshold) over the two periods

suggesting irrigation also a�ects adaptation to a precipitation shock.

This study contributes to three threads of literature. First, it is the �rst comprehensive study of

the temperature-yield relationship over a period of unprecedented economic structural change in the

world's most populous country. Our �nding shows a decline in the impacts of extreme temperatures

on crop yields over time that is larger than that in the previous literature (Schlenker and Roberts,

2009; Roberts and Schlenker, 2011; Bleakley and Hong, 2017 and Ortiz-Bobea et al., 2018). Three of

the four papers on temporal evolution of temperature-yield relationship in the US �nd no evolution

of temperature sensitivity or increasing temperature sensitivity in the most recent decades of the 20th

century. The only exception is Bleakley and Hong (2017), which �nd the temperature sensitivity of

farm value in the US of the 20th century was signi�cantly lower than that in the 19th century but

they do not show how the farm value had evolved within the 20th century. The �ndings of this study

suggest that estimates of temperature sensitivity from an earlier period may not be a good guide to

predicting climate-change impacts in the future.

Second, this paper provides new evidence on the importance of irrigation for adaptation to temper-

ature extremes(Taraz, 2017; Tack et al., 2017; Fishman, 2018; Zaveri and Lobell, 2019). Taraz (2017)

and Fishman (2018) focus on the use irrigation to adapt to precipitation shocks and �nd no adapta-

tion e�ects of irrigation to precipitation change. Tack et al. (2017) and Zeveri and Lobell (2019) �nd

that temperature sensitivity of yields in irrigated farming areas is lower than that in the pure rain-fed

farming areas. The major di�erence between this study and those by Tack et al., Zeveri and Lobell

is that they focus on a cross-sectional comparison of temperature sensitivity across areas grouped by

the extent of irrigation coverage while we provide a longitudinal comparison of temperature sensitivity

over time that varies by irrigation coverage. The variation in irrigation coverage over time allows us to

restrict the correlation between irrigation adoption and unobserved confounding factors such as crop

varieties already adaptive to local climates.

Third, this studies shows the complementarity between ex ante and ex post adaptation: the ex-

pansion of irrigation coverage is associated with a stronger ex post adaptation e�ect. The literature
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assumes that all adaptive adjustments are made ex ante (Dell et al., 2009, 2012; Burke and Emerick,

2016; Lemoine, 2017; Shrader, 2018, Chen and Gong, 2020). This is how researchers argue that weather

realizations cannot identify adaptation e�ect. But this paper shows theoretically and empirically that

weather realizations identify a combination of without-adaptation e�ect of extreme temperatures and

ex post adaptation e�ect, similar to adaptation in the aspect of heat-related mortality (Barreca et al.,

2016) and amelioration behavior after the state realizes (Gra� Zivin and Neidall, 2013). However, the

ex post adaptation e�ect cannot be overstated because the e�ectiveness of ex post adaptation relies on

ex ante adaptation inputs.

Weather realizations, with a panel �xed e�ect model conditional on ex ante adaptation, bound

the direct e�ect without adaptation from above. The estimated adaptation e�ect may be downward

biased estimated when the without-adaptation e�ect identi�ed by weather �uctuations is compared to

the with-adaptation e�ect identi�ed by the variation in subsample weather averages (See Dell et al.,

2014 for a review). The downward bias may be exacerbated by the complementarity between ex ante

adaptation and ex post adaptation. A stronger ex ante adaptation e�ect is associated with stronger ex

post adaptation e�ect due to complementarity. Thus, the direct e�ect estimated by weather realization

is more attenuated upward by the stronger ex post adaptation e�ect and the downward bias is more

salient as a result.

Finally, this studies contributes to the literature on the overall e�ects of adaptation in developing

countries. Earlier literature about adaptation in developing countries have been focused on e�ects of

explicitly observed adaptative measures (Kurukulasuriya and Mendelsohn, 2008; Wang et al., 2010;

Huang et al., 2015) and determinants of farmers' adaptation decisions (Deressa et al., 2009; Di Falco

et al., 2011 a and b). A few more recent studies focus on farmers' ex post adjustments of agricultural

inputs in response to short-run extreme temperature shock (Aragon, et al., 2019; Jagnani, et al., 2020)

but do not evaluate how these adjustments moderate the extreme temperature impacts on agricultural

outcomes. The main di�erence between this study and those above is that this study estimates the

overall ex post adaptation e�ects with the approach of examining the temporal evolution of the extreme

temperature e�ects driven by the temporal change in irrigation, a mechanism that is not formally

investigated in those studies.

The remainder of the paper is organized as follows. Section 2 introduces the background of agri-

cultural policies after 1996. Section 3 introduces a conceptual framework that explains how the link

between temperature and crop yields can be used to identify adaptation e�ects as well as the mech-

anisms through which agricultural inputs may mute the temperature-yield relationship. Section 4

describes the data sources and reports the summary statistics. Section 5 presents the econometric

models used to examine the temporal evolution of the temperature-yield relationship and the potential

explanations of its change over the past 30 years. Section 6 reports the results from �tting the models

in Section 5. Section 7 concludes.
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2 Background

This section introduces several policies launched after 1996 to encourage investments on agriculture

and may improve agricultural adaptation (i.e., 1996 marks the starting year of the change in the

temperature�yield relationship). In 1996, the Chinese government set an objective for grain self-

su�ciency, aiming to satisfy a minimum of 95% of domestic consumption of rice, wheat, corn, coarse

grains, soybeans and potatoes through domestic production(The State Council of P.R. China, 1996;

Hyde and Syed, 2014). This state objective stems from the Chinese government's view that China's

food security is best maintained by meeting its domestic food demand with domestically produced

food, thereby minimizing its reliance on international markets. While the target explicitly focuses on

these crops, the production of other food is generally supported by a range of other policies (Hyde and

Syed, 2014; Simon et al. 2014).

The self-su�ciency objective is one of the main reasons why the Chinese government intervenes

in China's agricultural market. Self-su�ciency is supported by market price support and agricultural

subsidies that encourage agricultural production. Price support refers to a minimum purchase price

set by the Chinese government for each targeted crop(OECD, 2005, 2013), which is shown to increase

monthly average prices and reduce the price volatility (Li and Chavas, 2018). Therefore, price support

may increase farmers' income and stimulate investment on agriculture through the income e�ect. Agri-

cultural subsidies for private farmers are designed to improve uptake of modern agricultural practices,

thereby providing farmers with an incentive to adopt capital-intensive inputs that may include adap-

tive inputs(OECD, 2013).4 Other subsidies known as awards are paid directly to county governments

in areas that have high grain production. These subsidies are aimed to encourage public investment

in both infrastructure and research to support production (Gale, 2013).

Although the policies supporting the national objective of food self-su�ciency are designed to

ensure food security and increase farmers' income, rather than targeting climate change, they may

improve adaptation to extreme weather condition because they encourage the adoption of more e�-

cient agricultural inputs such as fertilizer, irrigation and agricultural machinery. Understanding how

input utilization driven by these agricultural policies moderates extreme temperature impacts is thus

important for developing e�ective adaptive strategies.

4An example is the "One Exemption and Three" policy. "One Exemption" refers to the exemption of agricultural taxes.
"Three Subsidies" refers to subsidies to farmers based on individual's total planted area to increase their income, subsidies
for high-quality seed varieties and subsidies for the purchase of mechanized agricultural inputs. The adaptation e�ect
of adopting heat-resilient seed varieties cannot be explicitly investigated because of data limitations. Hence, we use
county-speci�c time trends in the panel model to account for the smooth change in crop yields that may be driven by
technology advancement including high-quality seeds.
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3 Conceptual Framework

3.1 Identifying Ex post Adaptation

In this section, we present the theoretical framework used to formalize how temporal evolution of

extreme temperature impacts implies e�ect of adaptation to temperature extremes and the relationship

between ex ante adaptation and ex post adaptation, which helps us understand the identi�cation

strategy for the ex post adaptation e�ect and the linkage between theory-predicted input adjustment

and the real input adjustment that can be observed in the data. The key factor to understanding the

relationship between ex ante adaptation and ex post adaptation is the timing of adaptive inputs. For

extreme temperature shocks that occur after the start of the growing season, farmers can adjust inputs

in response to realization of extreme temperatures (e.g. using irrigation water). Ex ante adaptive

inputs can facilitate the use of ex post adaptive inputs. For example, it is very costly to extract

irrigation water after extreme temperature realizes unless irrigation system (e.g. drainage ditches,

wells, dams, canals) has been built up ex ante.

Consider a farmer producing a single type of crop on a unit parcel of land in year t. Conditioning

on the capital stock K∗ for adaptation, which is determined before weather realizes, the farmer chooses

input xt after weather realizes to maximize the pro�ts in equality (1). The yield is a function of realized

weather wt during the growing season of year t, adaptive capital stock K and an adaptive �ow input

xt determined after weather wt realizes.
5 The adaptive capital stock K∗t (e.g. irrigation infrastructure)

is ex ante adaptation input that is determined before weather realizes while the �ow input xt is ex

post adaptive input that is determined after weather realizes. Therefore, the farmer's problem can be

written as

max
xt

πt(K
∗
t , wt) = Pt · F (xt,K

∗
t (Et−1(wt)), wt)− Px,t · xt − PK,t ·K∗t (Et−1(wt)) (1)

The farmer chooses K∗t in year t − 1 based on Et−1(wt) which is farmer's expected weather of year t

conditional on information about the weather in all years up to and including the most recent year t−1.6

Pt, Px,t and PK,t denote the crop price and input prices. Assume that production function F (x,K,w) is

continuous, twice di�erentiable and concave. The marginal productivity of the two inputs is assumed

to be strictly decreasing. Ex ante adaptive capital Kt is assumed to be complementary to ex post

adaptive input xt such that F ′w < 0, F ′′wx > 0, F ′′wK > 0, F ′′xK > 0.7 Conditioning on a �xed K∗ and a

realization of weather wt, the �rst order condition is

5As we aim to estimate e�ects of realized extreme temperatures during the growing season, seed variety and cropping
area are determined prior to weather realizations and therefore are not arguments of the realized production function.

6 For a derivation of ex ante investment as a decision in anticipation of future weather conditions, see Lemoine (2019).
7 F ′w = ∂F

∂w
, F ′′wx = ∂2F

∂w∂x
, F ′′wK = ∂2F

∂w∂K
, F ′′xK = ∂2F

∂x∂K
.
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Pt · F ′x(xt,K
∗
t (Et−1(wt)), wt) = Px,t

The �rst-order condition clari�es that optimal x∗t is a function of realized weather wt and ex

ante input K∗. Di�erentiating the �rst order condition with respect to K∗t and wt, we can show that

∂x∗t /∂wt > 0 given the ex ante adaptive inputK∗t and dx
∗
t /dK

∗
t > 0 conditioning on weather realization

wt. The former implies that ex post adaptation is positively responsive to rising temperatures and the

latter suggests ex ante adaptation facilitates use of ex post adaptation. The complementary relationship

between ex ante and ex post adaptive inputs provides a basis for using the change in the ex ante input

as a proxy for the change in the ex post input. This is applicable to estimating the adaptation e�ect

of irrigation. In the data, we can only observe irrigation coverage (i.e. the fraction of arable land

that is irrigated) which is a measure more about ex ante adaptation. The complementary relationship

between irrigation capital and irrigation water use allows us to use the change in irrigation coverage

as a proxy for ex post use of irrigation water.

Denote yt = F (x∗t (K
∗
t , wt),K

∗
t , wt) as realized crop yield at the optimal input level. The aggregate

e�ect of a temperature shock on crop yields can be expressed as

∂yt
∂wt

=
∂F

∂wt
+
∂F

∂x∗t

∂x∗t
∂wt

(2)

The �rst term is the direct e�ect of an extreme temperature shock without adaptation and the second

term is the ex post adaptation e�ect. The e�ect of weather realization is a combination of the direct

e�ect of realized weather without an adaptation e�ect and ex post adaptation e�ect. This implies

that the e�ect of weather realization on economic outcomes estimated through a panel �xed e�ect

model conditional on ex ante adaptation bounds the direct e�ect without adaptation from above.

Therefore, the adaptation e�ect may be downward biased when estimated by comparing the without-

adaptation e�ect identi�ed by weather �uctuations with the with-adaptation e�ect identi�ed by the

variation in subsample weather averages (See Dell et al., 2014 for a review). The downward bias

may be exacerbated by the complementarity between ex ante adaptation and ex post adaptation.

A stronger ex ante adaptation e�ect is associated with a stronger ex post adaptation e�ect due to

complementarity. Thus, the direct e�ect estimated by weather realization will be more attenuated

upwards by the stronger ex post adaptation e�ect and the downward bias will be more salient as a

result.

The adaptation e�ect consists of marginal adaptation e�ect of the ex post input (∂F/∂x∗) and

responsiveness of the ex post input to weather realization (∂x∗/∂w). Hence, mechanisms for ex post

adaptation are either a quantity change in inputs in response to weather realizations or a e�ciency

change in inputs in terms of adapting to temperature extremes, which may be related to technological
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innovation (e.g. drip irrigation is more e�cient than sprinkler irrigation which is more e�cient than

surface irrigation). Because we only observe agricultural inputs rather than technological innovation in

the data, this study aims to estimate the ex post adaptation e�ect through the mechanism of quantity

change in inputs. Our approach is to compare extreme temperature impacts on crop yields (∂y/∂w)

over time periods based on the assumption that the direct e�ect (∂F/∂w) remains constant over time

periods. We use a model speci�cation of province-by-year �xed e�ects and local time trends to account

for the temporal change in input e�ciency in terms of moderating extreme temperature impacts on

yields. In this way, we can disentangle the adaptation mechanism of change in input bene�ts from

the mechanism of change in inputs quantity to quantify the share of decline in temperature sensitivity

that is explained by temporal change in inputs.

Figure 1 illustrates the empirical strategy by depicting the evolution of temperature-yield relation-

ship over time periods. This relationship is modeled as an inverted U shaped parabola because the

literature has documented the nonlinear e�ects of temperature on crop yields (Schlenker and Roberts,

2009 and Lobell et al, 2011). The steeper parabola denotes the temperature-yield relation in Period 1

and the �atter one denotes the relation in Period 2. In Period 1, an unanticipated increase of temper-

ature from the yield-maximizing T0 to T1 generates yield loss measured by AB = Y0 − Y1. If farmers

have more access to adaptive inputs in Period 2, the yield loss caused by the same temperature increase

reduces to AC = Y0 − Y2. The adaptation bene�t is BC = Y2 − Y1, which represents the reduction

in temperature-related yield loss due to increased use of adaptive inputs. The evolutionary e�ects of

extreme temperatures on crop yields can be estimated by a period-speci�c panel �xed e�ect model

following the empirical strategy by Barreca et al. (2016). Instead of estimating AB and AC directly,

we can only estimate marginal e�ects of temperature rise. The coe�cients for the high temperature

variable provide the estimate of |AB|
|T1−T0| and

|AC|
|T1−T0| .

3.2 The Ideal Econometric Model and A Practical Substitute

The temperature-yield relationship derived above suggests that contemporaneous crop yield is a func-

tion of both realized weather and expectation of current weather conditions from the previous standing

point. Therefore, the ideal econometric model on this relationship would be

yit = b0 + b1 · wit + b2 · Ei,t−1(wit) + νit (3)

where i denotes the cross-sectional unit (e.g. counties). wit is the current local realization of weather.

Ei,t−1(wit) is individual i's expectation about the future weather based on previous realized weather up

to and including year t− 1, as described in equality (1). The term of weather realization is to estimate

the marginal e�ect of a temperature shock including the direct e�ect and the ex post adaptation bene�t.

The term of weather expectation is to estimate the ex ante adaptation bene�t.
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However, observing private expectation is impossible in this study and �nding good proxies for

farmers' beliefs is challenging in general. Leaving the expected weather term into the error term would

threaten the identi�cation assumption for weather realization (i.e. E(witνit) = 0) because weather

expectation as a function of previous weather may be correlated with the current weather under

climate change wherein temperatures at locals have been stably increasing over time. A panel model

with two-way �xed e�ects is thus the preferred substitute for the ideal model.

By conditioning on county and province by year �xed e�ects, the weather variation comes from

county-speci�c deviations in weather around the county averages after controlling for shocks common to

all counties in a province (Deschenes and Greenstone, 2007) which is less likely to su�er from the serial

correlation problem. In addition, we estimate spatial heteroskedasticity- and autocorrelated-consistent

(HAC) standard errors to allow for county-speci�c serial correlation (Hsiang, 2010). Therefore the

practical model for estimation is

yit = αi + b0 + b1 · wit + ηpt + νit (4)

where αi are the county �xed e�ects and ηpt is province-by-year �xed e�ect. We extend equation (4)

to a period-speci�c panel �xed e�ect regression model in Section 4.

4 Data Sources and Summary Statistics

4.1 Data Sources

Agricultural production data. We collect a county-level agricultural dataset on China from 1981 to 2010.

The county-level agriculture data comes from the Chinese Academy of Agricultural Sciences, which

collected this data jointly with the Ministry of Agriculture. The Chinese Academy of Agricultural

Sciences sent agricultural survey teams to villages where surveyors interviewed farmers. The data were

then aggregated to the county level. Agricultural data on the Xizang Autonomous Region (Tibet) and

Qinghai Province are limited. These two provinces are located on the Qinghai�Tibet Plateau with

an average elevation of over 4000 m; hence, agricultural activities involving the three major crops are

scarce. Thus, the impact of these missing data on our analysis should be limited.

The variables in the agricultural data relevant to this research include the county-level production

and planted area for the two investigated crops, corn and soybean, as well as agricultural inputs

that may alleviate extreme temperature e�ects. These inputs include the irrigated sown area (in

hectares), agricultural machinery power (in kilowatts), aggregate labor inputs (labor employed in the

crop farming, forestry, husbandry, and �shery sector as a whole), fertilizer use, and electricity use

(in kilowatt hours) in each county's rural area. In the analysis of agricultural inputs as adaptation

measures, we use irrigation coverage (i.e., proportion of farmland irrigated; calculated as the ratio of
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the irrigated area to the arable area), per hectare agricultural machinery power (kilowatt/ha), per

hectare fertilizer use (ton/ha), and per capita electricity use (kilowatt hour per capita). However, we

cannot observe agricultural inputs for a single crop, preventing us from accurately estimating the role

of agricultural inputs for each crop in mitigating the heat-related yield loss.

Crop region division and growing season. Corn and soybean are planted across China but they di�er

in variety and growing season by region because of spatially varying climatic conditions. The Chinese

Cropping System (2005) and Liu (1993) provide us with the division of the corn and soybean regions

and corresponding growing seasons, as illustrated in Figures A.1 and A.2, respectively. Corn and

soybean in China can be categorized by season (Chen et al., 2016). Spring corn and soybean, typically

planted in April and harvested in late September, are concentrated in the northeast, northwest inland

areas, and southwest mountainous areas. Summer corn and soybean are grown in June and have a

slightly shorter growing season than spring corn does and are primarily produced in the Huang-Huai-

Hai (HHH) Plain area. Autumn corn and soybean are mainly planted in the mountainous areas of the

south and southwest regions. A small amount of winter corn and soybean is planted in the tropical

areas of the south and southwest regions, accounting for less than 5% of national production (Zhang et

al., 2017). Figure A.2 shows that the growing seasons of the two crops are concentrated around April

to September (i.e., spring and summer) when the country is experiencing frequent heat shocks. This

provides us more data variation for estimating the heat-related yield loss.

Weather. The weather data are from the National Meteorological Information Center of China,

which is the o�cial institute of weather data gathering and publishing. We collected station-day data

for 824 stations across China from 1981 to 2010 (see Figure A.3). To transform the weather data

from the station level to the county level, we use the inverse distance weighting method, a standard

method commonly used in the literature (Mendelsohn et al., 1994; Deschenes and Greenstone, 2007,

2011; Zhang et al., 2017). First, we choose a circle with a 200 km radius for each county's centroid.

We then take the weighted average of the weather data for all the stations within the circle, where

the weights are the inverse of the distance between each station and the county's centroid. Finally, we

assign the weighted average to each county.8

4.2 Summary Statistics

Weather Statistics. Table 1 summarizes the corn and soybean productivity and climate conditions

within the growing season of each crop. The mean value of each variable is the national mean of

county's average within each time period (1981-1995 and 1996-2010) weighted by county's planted area

8Au�hammer et al. (2013) suggest using a relatively continuous weather record for weather stations when averaging daily
station-level data across space. This is to avoid the large pseudo-variation generated by missing station-level data, which
is crucial for estimating standard errors because the weather variation should be small in the panel setting relative to the
cross-sectional setting. This is a minor issue, as the proportion of missing values in all the observations is less than 0.01%
for all the climate variables except evaporation (Zhang et al., 2017). The share of missing values for evaporation is about
25% and the stations with a large amount of missing observations for evaporation are all located in the Tibet�Qinghai
Plateau, which is dropped from the analysis.
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for each crop. To highlight di�erences over time, Table 1 reports summary statistics separately for

the 1981-1995 and 1996-2010 periods. From the pre-1996 period to the post-1996 period, the average

annual corn(soybean) yield increased from 4262 kg/ha (1361 kg/ha) to 5698 kg/ha (1819 kg/ha).

Climate conditions are described by two parts: regular climate variables including temperature and

precipitation and additional climate variables including relative humidity, sunshine duration, wind

speed, evaporation and ground surface temperature. Evolution of these climate conditions over the

two time periods suggests that the climate has become hotter, drier, less humid and exposed to less

sunshine in the historical long run.

Figure 2 presents the spatial distribution of the change in temperature and precipitation change in

the corn and soybean area over time. The climate has changed largely and the extent of change vary

substantially over space. As shown in Figure 2, China has experienced a nationwide temperature rise

from 1981 to 2010, with the annual average temperature increase varies from less than 0.2 ◦C to more

than 1 ◦C. Only a few counties in the south and southwest of the corn and soybean area experienced

a decreasing temperature. Counties in the north experienced a more rapid temperature increase. At

the same time, annual average of precipitation decreased in the north or increased in the south as

much as 10 mm (1 cm). The spatial di�erence and changing climate provide large variation for reliably

estimating the temperature-yield relationship.

Agricultural production statistics. Figure 3 depicts spatial distribution of annual average of crop

yields over 1981-2010 and of percentage change of annual average of 1981-1995 relative to 1996-2010.

The majority of counties had increasing yields of the two crops (See Figure 3, Panel b and d) but

counties experiencing larger temperature increase in Figure 2 tend to have a lower increasing rate of

crop yields, implying that high temperature deteriorate crop productivity.

The agricultural data set provides data on irrigation coverage, fertilizer use, agricultural machinery

and electricity. These four inputs are the potential measures that can e�ectively mitigate the extreme

temperature e�ect on crop yields.9 Irrigation coverage is measured by the fraction of arable land that

is e�ectively irrigated i.e. the ratio of irrigated land area over arable land area; agricultural machinery

is measured by agricultural machinery power used for each hectare of total planted area; fertilizer is

measured by fertilizer inputs used for each hectare of total planted area; electricity is measured by

electricity consumption per capita of rural population. The total planted area is the aggregate planted

area for all crops. We cannot observe separate inputs for each crop in the data.

We are more interested in the change in the four inputs over time than the level because we aim

9 The four inputs may help farmers mitigate extreme temperature e�ects in di�erent ways based on agronomic theory.
Irrigation may reduce heat stress by o�setting the additional evapotranspiration demand due to higher temperatures
(Lobell et al., 2013) and cooling the canopy temperature (Siebert et al., 2014). Fertilizer use enhances plant growth
by providing the nutrients essential to leaf growth (nitrogen) as well as the development of roots, �owers, seeds, and
fruit (phosphorus) and strong stem growth, moving water in plants, and promoting �owering and fruiting (potassium).
Apart from at the start of the growing season for sowing, agricultural machinery also plays an important role in plant
protection (mobile sprayers) and harvesting (Edwards and Hanna, 2020), the timing of which is sensitive to daily weather
conditions. Electricity, as a necessary fuel to power agricultural activities, should be regarded as a potential mechanism
for mitigating extreme temperature e�ects.
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to estimate the extent to which the change in potential adaptive inputs accounts for the change in

temperature sensitivity. Figure 4 depicts the distribution of the change between the pre-1996 and post-

1996 periods for each adaptive input. The change in input variables is calculated by the di�erence

between the 1981�1995 average and 1996�2010 average. The mean value of each input change, as

depicted by the dashed line in each histogram, is positive, implying that agricultural inputs have

increasingly been used in China over time, which is consistent with the rapid growth in the Chinese

economy in the past three decades. There is large variation in the change in each input across counties,

allowing us to accurately estimate the e�ects of inputs in mitigating extreme heat impacts. In contrast

to those inputs increasingly used in most counties, almost as many counties show irrigation expansion

as irrigation contraction, generating a close-to-zero mean value of irrigation change. Considering the

distributional characteristics for irrigation coverage, we compare the temperature sensitivity of crop

yields in counties with irrigation expansion to that in counties with irrigation contraction to explain

the change in temperature sensitivity.

5 Empirical Strategy

This section describes the models estimated to infer the relationship between crop yields and weather

shocks over time periods as well as factors that modify the relationship over time.

5.1 The Econometric Model for Temperature-Yield Relationship

We �rst describe the regression model used to estimate the temperature-yield relationship. Since

we use a panel setting with county and province-by-year �xed e�ects, the responses of crop yields

to weather shocks are identi�ed through the plausibly exogenous variation in weather over time at

the county level after adjusting for common shocks to all counties within a province in a year. We

interact all the weather variables with a dummy variable of period indicator to capture the evolution

of temperature-yield relationship due to adaptation. The baseline regression model we estimate is as

follows:

yit =

D∑
d=1

GDDit,l0:l1 · 1{period = d} · β1,d +
D∑

d=1

GDDit,l1:∞ · 1{period = d} · β2,d

+

D∑
d=1

Precit,p<p0 · 1{period = d} · β3,d +

D∑
d=1

Precit,p>p0 · 1{period = d} · β4,d

+
D∑

d=1

wit · 1{period = d} · β5,dβ5,dβ5,d +
D∑

d=1

w′it ·wit · 1{period = d} · β6,dβ6,dβ6,d

+ αi + ηpt + λi,1t+ λi,2t
2 + εit (5)
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where yit is the log of annual crop yields in county i and year t. D denotes the number of periods in

the panel. The baseline period is 15 years i.e. the �rst period is 1981 to 1995 and the second period

is 1996 to 2010. The motivation for the 15-year division is based on a series of agriculture policies

formulated in the post-1996 period, as introduced in the background section. In addition, the 15-year

division allows us to construct two balanced time periods as there are 30 years of data in total.

GDDit and Precit denote growing degree days and precipitation, respectively; the measurement

of these two variables is introduced in the following paragraph. The vector wit denotes the additional

climate variables other than temperature and precipitation including relative humidity, sunshine du-

ration, wind speed, evaporation and ground surface temperature as mentioned in Section 4.2 and their

quadratic forms captured by the inner product of vectorwit. Additional climate variables are controlled

for because the full set of climate variables are correlated (Lawrence, 2005; Wooten, 2011; Zhang et al,

2017) and omitting climate variables other than temperature and precipitation can overestimate the

extreme temperature e�ects on crop yields (Zhang et al, 2017). The indicator variable 1{period = d}

speci�es the time period denoted by d and this interacts with all climate variables.

The speci�cation includes a full set of �xed e�ects. αi are the county �xed e�ects to account for

county-speci�c time-invariant determinants of crop yields such as soil quality; ηpt denotes province-

by-year �xed e�ects to account for province-level shocks. For example, agricultural subsidies provided

by provincial-level governments can a�ect agricultural productivity, while province-level price shocks

especially government-procuring crop prices provide incentives of adjusting inputs such as cropland

and labor and therefore a�ect crop productivity. Omitting policy-wise distinctions across provinces

may lead to comparison of counties in di�erent policy regimes, which may bias the estimation of

temperature-yield relationship if climate conditions are inputs for agricultural-policy making.

Along with the province-by-year �xed e�ects, county-speci�c time trends account for province-level

di�erences and county-speci�c heterogeneity in adaptation mechanisms other than ex post adjustment

of input quantities. We adopt two potential confounding adaptation mechanisms for the ex post

adaptation. The �rst case is ex ante adjustment of inputs in anticipation of local climate trends.

For example, farmers adopt more heat-resilient seed varieties before the start of growing season in

anticipation of evolution of local climate. The second case is increasing marginal adaptation e�ect of

inputs over time that may moderate extreme temperature impacts without adjusting input quantities.

For example, water-saving irrigation technologies allow farmers to irrigate more extensively with the

same amount water as used under old technologies.

The variable of central interest is extreme temperatures. The literature has demonstrated strong

nonlinearities in the relationship between temperature and agricultural outcomes (Schlenker and Roberts,

2009). Nonlinearities are generally captured using the concept of growing degree days (GDD), which

measure the amount of time a crop is exposed to temperatures between a given lower and upper

bound. Following Schlenker and Roberts (2009) and Burke and Emerick (2016), we use the within-day
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distribution of temperatures to calculate the percentage of each day that each county is exposed to

temperatures between given lower and upper bounds , and then sum these daily exposures over a �xed

growing season (e.g. April 10 to October 20 for corn in North region) to get a measure of annual

growing degree days for those bounds.10 The lower temperature piece GDDit,l0:l1 is the sum of GDD

between bounds l0 and l1 and the upper temperature piece GDDit,l1:∞ has a lower bound l1 and is

unbounded at the upper end.

Similarly, we measure precipitation in a county as a piece-wise linear function with a kink at p0. The

variable Precit,p<p0 is the di�erence between precipitation and p0 interacted with an indicator variable

for precipitation being below the threshold p0.
11 Precit,p>p0 is similarly de�ned for precipitation above

the threshold. In the estimation, we set l0 = 8 since 8 ◦C is considered as the minimum temperature for

crop growth (Chen et al, 2016) and allow the data to determine l1 and p0 by looping over all possible

thresholds and selecting the model that best �t the data based on the Bayesian Information Criterion.

This selection process is applied to both the full sample (nationwide) and each single region described

in Figure A.1 (in Appendix A). The selected thresholds for growing degree days and precipitation by

region are presented in Table 2.12 The Choice of period length, either 10 or 15 years as a period does not

make a big di�erence to the selected thresholds both for the nationwide sample and regional samples,

implying the thresholds of GDD and precipitation have remained stable over time and verifying that

evolution of temperature-yield relationship is mainly re�ected by �attening the temperature response

function instead of shifting temperature thresholds over time, as illustrated by Figure 1. We also

conduct robustness checks with multiple thresholds other than the selected ones in Table 2 to avoid

threshold misspeci�ciation. The results of robustness analysis on threshold selection will be presented

in Figure 8.

The key coe�cient of the model in equation (5) is the β2 in each period, which measures how

crop yields are impacted by exposure to extreme heat in each time period. If economic agents adapt

signi�cantly to extreme temperatures, we would expect β2,d=1 < β2,d=2 < 0; in other words, the

estimated marginal e�ect of a daily exposure to temperature above the threshold in the later period

should be signi�cantly lower than that in the earlier period. The value (β2,d=1−β2,d=2)/β2,d=1 provides

the percentage of the short-run impacts of extreme heat o�set in the long run and is our measure of

the e�ect of ex post adaptation to extreme heat.

10We use trigonometric sine curve to approximate the within-day distribution following Snyder (1985). But in the following
simple example, we assume instantaneous temperature within a day is identical. If l0 = 0 and l1 = 30, a set of daily
average temperature of -1, 0, 5, 10, 29, 31 and 35 would generate GDDit,l0:l1 equal to 0,0,5,10,29,30 and 30 and
GDDit,l1:∞ equal to 0,0,0,0,0,1 and 5. This example is the same as the one in Burke and Emerick (2016).

11We use a simple example to illustrate the idea of piece-speci�c linear measurement of precipitation. Suppose a county
with precipitation of 60 cm this year and the kink point is 48cm, then Precit,p<p0 = 0 and Precit,p>p0 = 12.

12We do not estimate a separate temperature�yield relationship for the Loess Plateau region of soybean. Both the northeast
region and the Loess Plateau are subregions of the north region in the primary classi�cation of soybean production
according to the Chinese cropping system (Liu, 1993). Although they share a common growing season (see Figure A.2),
the two subregions have di�erent planted areas. The county-level average soybean planted area of the northeast region
(14,502 ha) is 6.7 times as large as that of the Loess region (2162 ha). Restricting the analysis to the northeast subregion
only does not make a di�erence to our conclusion of the adaptation e�ects in the north of China.
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5.2 The Econometric Model for Quantifying the Marginal Adaptation E�ects of

Inputs

This part of empirical analysis aims to �gure out inputs that may have muted the temperature-yield

relationship overtime. As shown in Section 3.2, the temporal evolution evolution of temperature sensi-

tivity is driven by changes in the quantities of adaptive inputs over time periods given the assumption

that the direct e�ect of an extreme temperature shock and the marginal adaptation e�ects of inputs

remain stable over time. In the augmented panel model described in equation (6), the interactions of

temperature variables and inter-temporal change of adaptive inputs are added to estimate the marginal

adaptation e�ect of inputs.

yit =GDDit,l0:l1 · β1 +GDDit,l0:l1 ·∆Inputsi · θ1 +GDDit,l1:∞ · β2 +GDDit,l1:∞ ·∆Inputsi · θ2

+∆Inputsi · φ+ Precit,p<p0 · β3 + Precit,p>p0 · β4 + wit · β5β5β5 + w′it ·witβ6β6β6

+αi + ηpt + λi,1t+ λi,2t
2 + εit (6)

where Inputsit is a vector of four inputs including irrigation, machinery, fertilizer and ∆Inputsi =

1
15

∑2010
t=1996 Inputsit −

1
15

∑1995
t=1981 Inputsit. Equation (6) is di�erent from equation (5) in two ways.

First, equation (6) includes the main e�ects for the inputs (denoted by Inputsit · φ) and their in-

teractions with the temperature variables (GDD low piece and high piece). Second, equation (6) is

estimated using the entire 30-year data without specifying the period-speci�c e�ects, which echoes the

stability assumption of the direct weather e�ect (without-adaptation e�ect) and marginal adaptation

e�ects of inputs. In this speci�cation, the evolution of temperature e�ects on yields is captured by the

change in inputs across the pre-1996 and post-1996 period so that we can quantify the role of each

input in reducing the temperature sensitivity. The adaptation e�ect through each input is estimated

by comparing the temperature sensitivity of yields in counties with a larger increase of input adoption

to that in counties with a smaller increase or even decrease (e.g. irrigation as shown in Figure 4).

The interaction term estimates the extent to which the e�ect of a daily exposure to temperatures

above the threshold l1 can be altered by the adaptive inputs. Our hypothesis is that the coe�cient on

the interaction term (θ2) is positive. A positive coe�cient would be interpreted as evidence that the

di�usion of a particular input reduces a crop's vulnerability to temperature extremes. The province-by-

year �xed e�ects along with county-speci�c time trend account for the same type of confounding factors

that may threat the stability assumption, the same as we stated in Section 5.1. For example, adoption

of new irrigation technologies such as switching from surface irrigation to sprinkling irrigation may

improve the marginal adaptation e�ect of irrigation even without change in water use. The interaction

between inputs and the low temperature category (e.g. GDDl0:l1) serves as a placebo check because

adaptive inputs will not directly protect crops from low temperatures.

A traditional challenge to identi�cation of the inputs' adaptation e�ects is that the variation in
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inputs is not experimental, so the estimated θ2 coe�cient is likely to be biased. One type of bias is

caused by the correlation between inputs and temperature. If the investigated four inputs co-vary with

other temperature-directed adaptation measures that are unobserved, the estimates of the marginal

adaptation e�ects of inputs may be upward biased. Figure 5 shows the extent to which the estimates of

the input e�ects are upward-biased, demonstrating the correlation between the change in an input and

change in exposure to extreme temperatures. Extreme temperature exposure is measured by degree

days for temperature above the selected threshold presented in Table 2 and the unit of the extreme

temperature variable is 100 degree days. The positive correlations for fertilizer use and electricity use

with extreme temperature exposure become insigni�cant after province �xed are controlled for, sug-

gesting that province-level di�erences are the common driver for the temporal change in irrigation and

extreme temperature exposure. Thus, controlling for province �xed e�ects is necessary for eliminat-

ing confounding e�ects. The correlation between irrigation coverage change and temperature change

remains signi�cantly negative even after province �xed e�ects are controlled for, implying that the es-

timation of irrigation e�ect in equation (6) may be downward biased. If the downward-biased estimate

is still signi�cantly positive, the endogeneity problem for irrigation may be a less severe problem.

Although we cannot rule out all sources of bias, we adopt the following strategies to minimize

the confounding e�ects generated by factors move in parallel with the four inputs. First, when using

province-by-year �xed e�ects and county-speci�c time trends, the bias generated by confounding factors

cannot occur through province-by-year di�erences (e.g. Province A expanded irrigation coverage this

year relative to Province B as A encountered a growing season with abnormally high temperature) or

county-speci�c gradual changes in crop yields (e.g. investment in irrigation is increased in anticipation

of temperature rise and exacerbating temperature sensitivity of crop yields).

Second, we add a temperature-by-year trend to equation (6) as a robustness check. The local

temperature trend consists of the interaction between all the temperature variables and a linear year

trend. This speci�cation allows for the possibility that the e�ects of temperature extremes on crop

yields change over time for reasons co-varying with any of the four inputs. Third, in addition to local

temperature trend, we further control for time-varying observables moving in parallel with the four

inputs. For example, irrigation expansion is supported by local economic prosperity and road building

is complementary to the use of agricultural machinery. In light of this, interactions of temperature

variables with temporal change of local GDP and change in cargo quantities by road are added to

equation (6) as another robustness check. The results for these two robustness checks are provided in

Section 6.2.
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5.3 The Econometric Model for Mechanisms Explaining the Decline in Tempera-

ture Sensitivity

The result for estimating equation (6) presented in Section 6.2 will point to irrigation as the central

adaptive input that e�ectively mitigate extreme temperature impacts. This suggests that the decline

in temperature sensitivity of yields may be explained by the change in irrigation coverage across the

pre-1996 and post-1996 period to some extent. To quantify the extent of this explanation, we estimate

equation (7)

yit =
4∑

j=1

1996∑
d=1981

GDDit,l0:l1 · 1{∆Irrigationi ∈ Ij} · 1{period = d} · βT<l1
j,d

+

4∑
j=1

1996∑
d=1981

GDDit,l1:∞ · 1{∆Irrigationi ∈ Ij} · 1{period = d} · βT>l1
j,d

+
4∑

j=1

1996∑
d=1981

Precit,p<p0 · 1{∆Irrigationi ∈ Ij} · 1{period = d} · βP<p0
j,d

+

4∑
j=1

1996∑
d=1981

Precit,p>p0 · 1{∆Irrigationi ∈ Ij} · 1{period = d} · βP>p0
j,d

+
1996∑

d=1981

witγ1,d · 1{period = d}+
1996∑

d=1981

w′it ·witγ2,d · 1{period = d}

+ αi + ηpt + λi,1t+ λi,2t
2 + εit (7)

where 1{∆Irrigationi ∈ Ij} is an indicator variable specifying whether each county's variation in

irrigation coverage ∆Irrigationi belongs to a speci�c category of the national distribution of irrigation

variation denoted by Ij . The inter-temporal variation ∆Irrigationi is calculated by the di�erence in

the average of irrigation coverage between the pre-1996 and post-1996 period. We classify all the

counties into four categories based on the distribution of irrigation variation: strictly below the 25th

percentile (denoted by I1), above the 25th percentile but strictly below the 50th percentile (denoted

by I2), above the 50th percentile but strictly below the 75th percentile (denoted by I3) and above

the 75th percentile (denoted by I4). We also interact irrigation with precipitation which a�ects water

resources for irrigation. All other model speci�cations remain the same as equation (5).

According the distribution of irrigation variation depicted in Figure 4 (a), the 25th, 50th, and 75th

percentile are -0.022, 0.029, and 0.095, respectively. With the triple interaction of extreme temperature

variable, irrigation category and period indicator, we estimate the heterogeneous evolution of yield

sensitivity to temperature extremes by category which indicates the extent to which irrigation has

changed over time. Our hypothesis for the extreme temperature e�ect on yields is that for j ≥

3, βT>l1
j,1996 > βT>l1

j,1981 signi�cantly while for j ≤ 2, βT>l1
j,1996 = βT>l1

j,1981. If irrigation is one of the main
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mechanisms driving the reduction in temperature sensitivity over time, we expect that the reduction

of temperature sensitivity in counties with irrigation expansion (Category I3 and I4) will be signi�cantly

larger than that in the counties with irrigation contraction (Category I1 and I2).

6 The Evolution of the Temperature-Yield Relationship Over 1981-

2010

This section presents the estimates of temperature-yield relationship over time periods. Our primary

analysis focuses on the period-speci�c e�ects of random year-to-year variation in temperature on the

yields of corn and soybean, two important grain crops in China in terms of total area sown and total

production. The yield (production per hectare) of these two crops is the basic measure of agricultural

productivity. We also estimate the e�ects of the four agricultural inputs on reducing the heat-related

yield loss and examine the extent to which the decline in temperature sensitivity of yields can be

explained by the expansion of inputs over time. The unit for the temperature variables in all the tables

and �gures reporting estimation results hereafter is 100 degree days and the unit for precipitation is

100 cm.

6.1 Temporal Evolution of the Temperature-Yield Relationship

6.1.1 Corn and Soybean Yields

Table 3 provides the results based on equation (5) for corn yields. In our piece-wise linear approach,

yield is expected to increase linearly up to an endogenous threshold and then decrease linearly beyond

that threshold. The temperature threshold for the whole country is selected at 28 ◦C and the pre-

cipitation threshold is at 51 cm. Columns 1-3 of Table 3 vary on the speci�cation of �xed e�ects as

articulated in the table. Columns 4 and 5 are di�erent from 1-3 on estimation of standard errors. In

Columns 1-3, the standard errors are clustered at the county level, whereas we use spatial HAC robust

standard error in Columns 4 and 5. Exposure to growing degree days (GDD) below 28 ◦C in 1981-1995

and 1996-2010 has small and generally insigni�cant e�ects on yields but increases in exposure of corn

to temperatures above 28 ◦C result in sharp declines in yields, as shown in the third and fourth row

in Table 3. In the period of 1981-1995, the point estimate of yield loss due to additional 100-day

exposures to temperature above 28 ◦C ranges from -37 % to -23 % while the corresponding estimates

in the period of 1996-2010 ranges from -11% to -4%, signi�cantly lower than the yield loss estimation

of 1981-1995, as shown by the row of p values which are derived from an F test of the null hypothesis

β1981 = β1996. The comparison among Columns 1 to 3 shows the relatively robust estimates of the

temperature-yield relationship in the two periods and that the province-by-year di�erences and county-

speci�c gradual changes in unobserved determinants of corn yields to some extent a�ect the yield loss
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caused by extreme temperatures. As shown in Columns 1 to 3, the relative adaptation e�ect are 90%,

71% and 50%, respectively; hence, it declines as the model speci�cations become more restrictive.13

The province-by-year �xed e�ects and county-speci�c trends to some extent account for province-level

di�erences and county-speci�c heterogeneity in adaptation mechanisms other than the pure change in

input quantities, which can be partially veri�ed by the decrease in the estimated adaptation e�ects

under more restrictive speci�cations. Therefore, the most conservative estimation of the adaptation

potential is 50%. Moreover, our estimation of adaptation bene�ts is robust when using spatial HAC

robust standard errors, as reported in Columns 4 and 5.14

Precipitation impacts also exhibit a nonlinear pattern. Corn yields signi�cantly increase as annual

precipitation increase up to 51 cm, beyond which an additional 100 additional centimeter of rainfall

decreases corn yields by about 15% to 30%. However, the yield loss due to excessive precipitation has

not signi�cantly decline over time periods. Irrigation may in�uence how excessive precipitations a�ects

crop yields in a number of ways. For example, surface drainage can solve the waterlogging problem due

to excessive rain (Konukcu, et al., 2006). We speculate that yields of counties with irrigation expansion

will be less sensitive to extreme amount of precipitation. This speculation is veri�ed in Section 6.3

after we introduce the irrigation e�ect. Table B.1 in Appendix B.1 presents the e�ects of additional

climate change variables (humidity, sunshine duration, wind speed, evaporation, and ground surface

temperature) on corn yields.

Table 4 shows the results for soybean yields in the same format as Table 3. The temperature thresh-

old for the linear piece-wise temperature-yields for soybean is selected at 26 ◦C and the precipitation

threshold is at 44 centimeter (cm). Exposure to GDD below 26 ◦C in the period of 1981-1995 and

1996-2010 both has small and generally insigni�cant e�ects on yields, whereas increases in the exposure

of corn to temperatures above 26 ◦C result in sharp declines in yields, as shown in the third and fourth

rows in Table 4. The estimated temperature-yield relationships of soybean using the di�erent speci�-

cations exhibit similar pattern with the relationships of corn in Table 3. In the period of 1981-1995,

the point estimate of yield loss due to additional 100-day exposures to temperature above 26 ◦C ranges

from -16% to -3% while that in the period of 1996-2010 ranges from -8% to 6%, signi�cantly lower

than the yield loss estimation of pre-1996 period, as shown by the row of p values which are derived

from an F test of the null hypothesis β1981 = β1996. The comparison between Columns 1 and 3 reveals

the relatively robust estimates of the temperature�yield relationship in the two periods. As shown

in Columns 2 to 5, the relative adaptation e�ect ranges between 44% and 56%, declining as more

13 The relative adaptation e�ects for di�erent model speci�cations are estimated through the uniform formula shown in the
previous section: (β2,d=1 − β2,d=2)/β2,d=1.

14We obtain di�erent point estimates when we switch from cluster robust standard errors to spatial HAC robust standard
errors (compare Column 2 with Column 4 and Column 3 with Column 5). The di�erence between the point estimates is
the calculation error generated by manually demeaning the variables for the regression in terms of the province-by-year
�xed e�ects and local time trends for the spatial HAC model. The Stata package for calculating spatial HAC standard
errors provided by Hsiang (2010) can only be applied to cross-sectional data.
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constraints for the models are added.15 Precipitation impacts exhibit an inverted V-shaped pattern as

well. The yield loss due to an additional 100 cm of precipitation above 44 cm is approximately 20%

and does not signi�cantly decline over time periods. Results for impacts of additional climate change

variables are presented in Table B.2 of Appendix B.1.

As shown in Table 1, the annual average corn yield in the post-1996 period is 4262.52 kg. There-

fore, it saves about 4.68 kg (4262.52 × 0.12%) of corn per hectare if the e�ect of daily exposure to

temperature above 28 ◦C is reduced from 0.23% to 0.11%. The annual planted area of corn in the

post-1996 is 24.8 million hectares. Therefore, the loss reduction of national aggregate corn production

is about 155,000 tons per year (0.00468 ton/hectare × 24.8 million hectares) compared with the sce-

nario in which the pre-1996 extreme temperature impacts prevailed. The loss reduction of aggregate

soybean production is about 11,000 tons per year based on the same reasoning. To obtain a sense of

the magnitude of the e�ects of extreme temperatures, it is necessary to compare the temporal evolution

of e�ects on yields to that of aggregate area planted for each crop. Formal estimation of temperature-

area relationship requires a di�erent approach than the panel model, which is out of the scope of this

study. Figure 6 demonstrates the time trend of the area planted with corn and soybean as well as the

proportion of the two crops accounting for the total planted area. In contrast to the rapid expansion

of corn production, the scale of soybean production remains stable over the last 30 years suggesting

that there have been more of increased planted area that is planted to corn than to soybean. Given

the decline in yield sensitivity to extreme temperatures and the evolutionary pattern of planted area,

climate change is predicted not to alter the growing trend of corn production nor signi�cantly reduce

soybean production of China. The 95% self-su�ciency objective on corn can be maintained. However,

the stagnant growth of soybean production has forced China to import about 80% of its domestic

soybean consumption. Hence, the growing demand of soybean from China will impose a large impact

to the international soybean market.

6.1.2 Heterogeneous Temperature-Yield Relationships by Region

In Tables 5 and 6, we estimate heterogeneous temperature-yield relationship of corn and soybean

by region (the regions depicted in Figure A.1) to understand heterogeneity in the response functions

across crop regions and to test whether regions that are more accustomed to temperature extremes have

adapted better such that they have a more muted temperature-productivity. For example, regions that

experience high-temperature days more frequently (i.e. HHH and South versus North and Northeast

in Figure 4) may have higher adoption rates of technologies that mitigate the detrimental impacts of

extreme heat.

Each column in Table 5 comes from a single regression in which the sample is restricted to the

15 Column 1, which is the speci�cation only controlling for the county and year �xed e�ects, provides an estimate of
relative adaptation as high as 300%. We do not take this result seriously, as this speci�cation doesn't control province-
level di�erences that can confound the temperature-yield relationship.
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corresponding corn regions in Figure A.1. The point estimates of the corn yield loss generated by an

additional-day exposure to temperature above the regional threshold vary largely across regions for

both of the two periods. Northern regions generally su�er more from extreme temperature than the

southern regions (Northwest is an exception among the northern regions but the estimated coe�cient

of the high temperature category is not signi�cant). All the regions except the inland Northwest

experienced a dramatic decline on the extreme temperature impacts over the two periods, indicating

prevalent adaptation e�ects all over the country. For the North, HHH, South and Southwest region,

the relative adaptation e�ects are 60%, 75%, 74% and 76%, respectively. The �nding of large cross-

sectional and longitudinal variation in temperature-generating yield losses is consistent with the idea

that hotter places adapt to higher temperatures better than colder places do.

Table 6 reports the regional di�erences in the temperature-yield relationships of soybean. Each

column presents the same of information as in Table 5. An additional-day exposure to temperatures

above the regional threshold generates a signi�cant loss on annual soybean yields for all the regions

except the South. The detrimental impacts of extreme temperatures vary largely across regions for

both periods. Northern regions su�er more from extreme temperatures than southern regions, which

is consistent with the idea that hotter places adapt to high temperature better than the cooler places

do. Only the HHH and Northwest region show signi�cant declines in the yield loss due to extreme heat

and the adaptation e�ect is about 80%. the decline in extreme temperature impacts in the Southwest

is not signi�cant and high temperatures are not even harmful to soybean yields in the South. The

nationwide decline in the heat-related yield loss estimated in Table 4 is thus mostly driven by the HHH

and Northwest region.

6.1.3 Robustness Check

The Standard error estimation is changed to a spatial HAC standard error estimation in the robustness

check to account for heteroskedasticity, county-speci�c serial correlation and cross-sectional spatial

correlation (Hsiang, 2010). The nonparametric estimation of the variance-covariance matrix for the

error term allows for contemporaneous spatial correlations between counties whose centroids lie within

d km of one another (Conley, 1999). Following Conley (2008), the weights in the matrix are uniform

up to the cuto� distance d. Moreover, nonparametric estimates of county-speci�c serial correlation are

estimated using linear weights that decrease to zero after a lag length of q years (Newey and West,

1987). In our model, the cuto� distance d takes the value from 100 km to 400 km with an increment

of 100 km and the length of years q is 3 years and 5 years. The results in Figure 7 show the estimated

impacts of an additional 100 days of exposure to extreme temperatures in the pre-1996 period and the

di�erence in the impact estimates between the pre-1996 and the post-1996 periods. We �nd that the

spatial HAC standard errors do not change the estimation of temperature-yield relationships for the

two crops compared with clustering-robust standard errors.
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Diverse temperature thresholds are applied to check the sensitivity of estimation to variation in

temperature thresholds. It is a concern that the selected temperature thresholds are misspeci�ed.

Figure 8 reports the estimation of temperature-yield relationships of corn and soybean for the full

sample using �ve temperature thresholds.16 The signi�cance of the yield loss decline is robust to

variation in temperature thresholds. The impacts of extreme temperatures on crop yields in the period

of 1981 to 1995 are obviously exacerbated as temperature threshold increases but are relatively stable

in the later period of 1996 to 2010. For example, as shown in Panel (a) of Figure 8, the national

average yield loss of corn caused by an additional 100 days of exposure to extreme temperatures in the

pre-1996 period increases from 22% to 42% as the threshold increases from 28 ◦C to 32 ◦C, while the

decline in the temperature sensitivity (marked by the triangle) in the post-1996 period rises with an

increase in the threshold. As a result, the yield loss due to extreme temperature exposures is stable

around 10% in the post-1996 period with respect to the temperature threshold.

The length of time period is varied to test the sensitivity of estimation results to the choice of

endpoint years of time periods and the number of years in a time period. In the robustness check,

we use 5 years and 10 years as the period lengths and rerun regression in equation (5).17 The results

are shown graphically in Figure 9. We display the point estimates and 95 % con�dence intervals of

the extreme temperature impacts on crop yields in the �rst period (1981-1986 is the �rst period in

the 5-year setting and 1981-1990 is the �rst period in the 10-year setting) and of the change in the

extreme temperature impacts in later periods relative to the �rst period. The extreme temperature

variable remains annual growing degree days above the endogenous temperature threshold used before

(28 ◦C for corn and 26 ◦C for soybean). Temperature thresholds other than 28 ◦C for corn and 26 ◦C

are applied; see Figures B.3�B.6 of Appendix B.2. For the two period lengths, we obtain signi�cant

estimates of the extreme temperature impacts in the initial period when farmers were less prepared for

climate change and invested less in adaptive inputs. Compared to the 15-year-period setting in Tables

3 and 4, the heat-related yield losses of the 5-year and 10-year settings are more severe in the initial

period. This is reasonable because the yield impacts of extreme heat in the �rst 15-year period (1981 to

1995) might have already incorporated the e�ects of adaptation occurring after the �rst 5-year period

or 10-year period. The signi�cantly positive point estimates of the di�erence between the initial period

and later periods show that our conclusion of signi�cant adaptation e�ects is insensitive to the choice

of the number of years in a time period or the ending years of the time periods. Another interesting

result is that in the 5-year setting, the improvement of temperature sensitivity to extreme heat for

16We use �ve consecutive temperature thresholds that include the threshold reported in Table 2 but �x the precipitation
thresholds at the values in Table 2 for all the regions, as we �nd that changing the precipitation thresholds does not
change the estimation of coe�cients of temperature variables. The estimates for the same robustness analysis for crop
regions on temperature thresholds are presented in Figure B.1 and Figure B.2 of Appendix B.

17An alternative way of checking the robustness of the results to the ending years of the time periods is running panel
regressions over rolling time periods such as 1950 to 1965 compared with 1966 to 1980, 1966 to 1980 compared with 1981
to 1995, 1981 to 1995 compared with 1996 to 2010, and so on. However, we only collected 30 years of data from 1981 to
2010. Hence, using rolling time periods is not feasible.
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the 1986-1990 period and 1991-1995 period relative to the initial 1981-1995 period is not statistically

signi�cant at 5% level and also smaller than the improvement in the post-1996 periods. This echoes

our �ndings on the irrigation mechanism that can explain the drop in the temperature sensitivity of

crop yields.

The model speci�cation is changed from a period-speci�c panel model to a more �exible panel model

that allows all the climate variables to interact with polynomials of calendar years such that the impact

of extreme temperature can change smoothly and �exibly over time (Roberts and Schlenker, 2011).

The polynomial takes linear, quadratic and cubic form in this study. Speci�cally, the new regression

model is

yit =GDDit,l0:l1 · β1 +GDDit,l0:l1 · f1,L(t) +GDDit,l1:∞ · β2 +GDDit,l1:∞ · f1,H(t)

+ Precit,p<p0 · β3 + Precit,p<p0 · f2,L(t) + Precit,p>p0 · β4 + Precit,p>p0 · f2,H(t)

+ wit · β6β6β6 + wit · f3(t) + w′it ·wit · β6β6β6 + w′it ·wit · f4(t) + αi + ηpt + fy(t) + εit

where the functions f(·) are the polynomial of years and all the other variables are de�ned in the

same way as in equation (1). We continue to use l1 = 28 for corn and l1 = 26 for soybean. Figure 10

displays the evolution of marginal impacts of extreme temperatures on crop yields, i.e., β2 + f1,H(t).

The linear and quadratic form of year trend exhibit a steadily rising tolerance of crop yields to extreme

temperatures. In the model of linear and quadratic form, the marginal impacts of extreme temperatures

decrease by 40% to 50%. In the linear(quadratic) model, marginal impacts of degree days above 28 ◦C

on corn yields increases from -0.23% (-0.27%) to -0.09% (-0.13%), consistent with the results provided

by the period-speci�c panel model. We have a similar evolutionary pattern on soybean. The model of

cubic time trend depicts a more complex evolutionary path but exhibits an improving trend of heat

tolerance. Estimation of polynomial-trend model with other temperature thresholds are presented in

Figure B.7 and B.8 of Appendix B.2.

6.2 Estimating the Marginal Adaptation E�ects of Agricultural Inputs

The analysis in Section 6.1 showed a large decline in the temperature sensitivity of crop yields. The

question that arises is why the temperature sensitivity declines over time periods. We address this

question in two steps. The �rst step, presented in this subsection, estimates the marginal adaptation

e�ects of agricultural inputs, which is the parameter of ∂F/∂x∗ in the conceptual framework of Section

3, which serves as the backbone element for quantifying the proportion of the decline in temperature

sensitivity explained by some central input. It also helps us determine which inputs contribute to

the decline in temperature sensitivity of crop yields. The moderating e�ects are estimated by the

interactions of extreme temperatures with temporal changes in the inputs in equation (6).

We now describe the estimation results of equation (6), the augmented model to quantify how
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agricultural inputs mitigate the impacts of extreme temperatures on crop yields. The data allows us to

examine four inputs. Irrigation is measured by the fraction of arable land that is e�ectively irrigated

i.e. the ratio of irrigated land area over arable land area. Agricultural machinery is measured by the

machinery power used for each hectare of total planted area. Fertilizer is measured by fertilizer inputs

used for each hectare of total planted area. Electricity is measured by electricity consumption per

capita of rural population.18 The total planted area is the aggregate planted area for all crops.

Due to data limitations, we cannot observe separate inputs for each crop. We use the change in

irrigation coverage as a proxy for the change of ex post use of irrigation water based on the relation

that ex ante adaptation facilitates ex post adaptation. Using equation (6) we estimate the adaptation

e�ects through the change in inputs by comparing yield sensitivity to extreme temperatures in counties

with a higher increase of input adoption with a lower increase (or even decrease as illustrated in

Panel (a) of Figure 4). This part of empirical analysis helps us to �nd which of the four inputs

are e�ective at moderating the extreme temperature impacts and contribute to the decline in the

temperature sensitivity of crop yields. Tables 7 and 8 only report the direct impacts of extreme

temperatures (growing degree days above the threshold) and interaction e�ects of the input change with

extreme temperatures. We �nd that none of the agricultural inputs signi�cantly a�ect the relationship

between low temperatures and crop yields (see Table B.3 and B.4 in Appendix B.2). We consider the

speci�cation in which each input enters individually (Columns 1�4 in Tables 7 and 8) as well as the

one in which all the inputs enter the same speci�cation (Column 5 in Tables 7 and 8).

Columns 1 in Tables 7 and 8 shows that the di�usion of irrigation is associated with a sizable and

signi�cant decrease in crop yield loss due to extreme temperatures. Table 7 demonstrates that an

expansion of irrigation coverage from 0% to 100% in a county is associated with a reduction in the

impact of 100-day exposure to extreme temperatures on corn yields by 23 to 25 percentage points on

average. Table 8 demonstrates that the moderating e�ect for soybean yields is 13 to 15 percentage

points. On the contrary, none of the other three inputs generate signi�cant adaptation e�ects to

extreme temperatures. We conduct two robustness analyses on the �ndings of adaptation e�ects

through temporal changes in inputs. First, we show that none of the modi�ers a�ect yield sensitivity

to low temperatures, suggesting that adoption of these modi�ers is not coincident with factors that

determine the overall crop yields. The results are provided in Table B.3 and B.4 in Appendix B.2.

Second, we measure irrigation coverage by the ratio of irrigated area to the total planted area as used

by the literature (Chen et al., 2016; Zhang, et al., 2017).

18According to Technical Terminology for Irrigation and Drainage by Ministry of Water Resources of China (1993), e�ective
irrigation area is de�ned as the area of arable land that is relatively �at, accompanied by water sources nearby, equipped
with irrigation infrastructure and can be irrigated normally in the situation without extreme weather intervention. So
e�ective irrigation area refers to part of arable land. Another measurement for irrigation coverage in the literature is
e�ective irrigation area over total planted area which is di�erent from arable land area in the sense that crops can be
planted in arable and non-arable land (Chen et al., 2016 and Zhang et al., 2017).
For a robustness check, we provide estimation of irrigation e�ects using the ratio of e�ective irrigation area over total

planted area in Table B.5 and B.6. As shown in Table B.5 and B.6, the results of sizable and signi�cant adaptation
e�ects uniquely by irrigation still hold.
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Finally, we add a temperature-by-year trend and interactions of temperature with observed factors

in parallel with inputs to equation (6) to account for confounding e�ects that co-vary with the four

inputs (Barreca et al., 2016). Table 9 reports the results of this robustness check. Columns 1 and 3

only add temperature-by-year trends (i.e. interactions between calendar year and the two temperature

variables) in the baseline speci�cation to control for unobserved factors that may lead to smooth

change of temperature sensitivity. Columns 2 and 4 add interactions of temperature with observed

confounding factors to the speci�cations in Column 1 and 3. Table 9 only reports the interaction e�ects

between the change in inputs and temperature variables. The comparison of Table 9 with Tables 7

and 8 suggests that controlling for potential confounding factors through the above speci�cations does

not signi�cantly change the estimates of the adaptation e�ects of inputs. The robustness analysis thus

supports the key �nding in Tables 7 and 8 that irrigation is the most e�ective input among the four

examined ones to moderate the extreme temperature impacts on yields. Although the variation in

inputs over time have exogenous characteristics (shown in Figure 5) and the estimation is robust to

speci�cations with confounding factors, the evidence on adaptation e�ects of inputs is only suggestive

rather than causal.

6.3 The Mechanism for the Decline in Temperature Sensitivity Through Irrigation

This section examines the mechanism for the decline in temperature sensitivity through the temporal

change of the most promising input�irrigation. If the change in irrigation partially explains the decline

in extreme temperature impacts, the extent of decline in counties with a larger increase in irrigation

coverage should be at least larger than that in the counties with lower increase. Given the distributional

characteristics of irrigation change shown in Panel (a) of Figure 4, we classify the distribution of the

irrigation coverage change into four categories based on the percentiles of the distribution. Category 1

to 4 cover the counties with irrigation change ranging from the 25th percentiles, the 25th to the 50th

percentiles, the 50th to the 75th percentiles, and the 75th percentile to 1, respectively. The 25th per-

centile, the 50th percentile and the 75th percentile are -0.022, 0.029 and 0.095 respectively, indicating

that most of the counties covered in Categories 1 and 2 have experienced irrigation contraction while

all the counties in Categories 3 and 4 have experienced irrigation expansion.
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We estimate the heterogeneous evolution of temperature sensitivity by these categories of irrigation

change in equation (7), a triple-interaction panel model where temperature variables interact with the

category and period indicators. Our hypothesis for the e�ect of extreme temperatures on yields is

that for j ≥ 3, βT>l1
j,1996 > βT>l1

j,1981 signi�cantly, while for j ≤ 2, βT>l1
j,1996 = βT>l1

j,1981. In other words, the

decline in temperature sensitivity in counties with irrigation expansion (Categories I3 and I4) will be

signi�cantly larger than that in the counties with irrigation contraction (Category I1 and I2). Figure

11 presents the estimation of the heterogeneous irrigation e�ects. There are �ve pairs of estimates

in each panel. The �rst pair is for the estimate of the temporal evolution of extreme temperature

e�ects for the model in equation (5) without the category interaction. The remaining four pairs are for

heterogeneous evolution by the categories of irrigation change. In each pair, the black circle denotes

the extreme temperature e�ects in the �rst 15-year period and the blue triangle denotes the di�erence

in the extreme temperature e�ects between the �rst 15-year and the second 15-year period. Only

in counties of category 3 and 4 (counties with irrigation expansion) is there signi�cant attenuation

towards zero on the extreme temperature e�ects from the �rst period to the second period. The

decline in Categories 3 and 4 is approximately 50%, consistent with that in the full sample estimated

by the uninteracted model. Thus, the decline in temperature sensitivity mainly occurs in counties with

irrigation expansion, suggesting that irrigation is a mechanism for ex post adaptation to temperature

extremes.

We can derive the share of temperature sensitivity decline explained by irrigation expansion using

the estimates of the adaptation e�ects of irrigation in Section 6.2. Tables 7 and 9 show that an increase

in irrigation coverage from 0% to 100% is associated with a decrease in extreme temperature e�ects on

corn yields by 20 to 26 percentage points. The average change in irrigation coverage for counties with

irrigation expansion (Categories 3 and 4) is approximately 0.14.19 An increase in irrigation coverage

by 14 percentage points reduces the heat-related yield loss by 2.83 to 3.68 percentage points (0.2 ×

0.14 to 0.26 × 0.14) accounting for 25.7% to 33.4% of the 11 percentage-point decline in the corn yield

loss for the full sample. Similarly, an average increase in irrigation coverage for the counties planting

soybean by 13.3 percentage points accounts for 24.8% to 28.6% of the 7 percentage-point decline of

soybean yield loss.

There are two caveats about the bene�ts of irrigation in terms of temperature sensitivity reduction

that may improve decision making on irrigation investment. First, the ex post adaptation e�ect of

irrigation is conditioned on ex ante investment in irrigation systems such as drainage ditches, wells

and reservoirs. Ex ante investment in irrigation capital stock is complementary instead of substitutable

for the ex post use of irrigation water after weather realizes. Second, irrigation may be a maladaptation

to longer-term climate change. Climate change in the long run may alter precipitation distribution

19 The average change in irrigation coverage is weighted by each county's average of corn planted area, which is consistent
with the panel regression weighted by annual planted area of corn. The unweighted average change in irrigation coverage
for counties with irrigation expansion is 0.12.
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and therefore the availability of irrigating water. investment in irrigation may be less e�cient if

viewed in relation to the longer-term projections of drying in the region. Economic agents should

thus consider the longer-term risk of water shortages when expanding irrigation coverage without

technological improvements in irrigation.

Finally, we analyze why there is no adaptation to precipitation shocks. Because some irrigation

equipment such as drainage can protect crops from waterlogging due to excessive rainfall, we hy-

pothesize that crop yields in counties with irrigation expansion become less sensitive to an extreme

precipitation shock compared with counties with irrigation contraction. Figure 12 veri�es this hypoth-

esis by presenting the heterogeneous change in extreme precipitation e�ects over time by categories of

irrigation change. The format of Figure 12 is the same as that of Figure 11 except it reports the results

for precipitation. The impacts of excessive precipitation decrease only in Category 4 counties both for

corn and soybean. As a result, the decline in extreme precipitation e�ects across the two periods is

not signi�cant for the full sample estimated by the uninteracted model.

7 Conclusion

Using a comprehensive county-level dataset on agricultural production and weather conditions during

the period of unprecedented economic growth in China, this study makes three primary �ndings on

the temperature-yield relationship over the past 30 years. First, we �nd a decline in the e�ects of

extreme temperatures on crop yields: the impact of daily exposure to temperatures above a threshold

on corn and soybean yields has declined by 40-50% from 1981-1995 to 1996-2010, saving approximately

155,000 tons of corn and 11,000 tons of soybean per year compared with the scenario in which the

pre-1996 extreme temperature impacts prevailed. The decline in temperature sensitivity implies large

opportunities of adaptation to climate change and relaxes concerns over food security in the world's

most populous country. A full set of �xed e�ects and local time trends help control for factors that

confound the evolutionary temperature-yield relationship through mechanisms other than change in

input quantities.

Second, the empirical results indicate that irrigation is the most e�ective input among the four ex-

amined in terms of moderating the production risk associated with extreme temperatures. Speci�cally,

an expansion of irrigation coverage from 0% to 100% in a county is associated with a reduction the

impact of 100-day exposure to extreme temperatures on corn (soybean) yields by 23 to 25 (12 to 14)

percentage points on average. By contrast, we �nd that the use of fertilizer, agricultural machinery and

electricity is not statistically related to attenuation of temperature sensitivity. Corresponding to the

conceptual framework that decomposes the aggregate adaptation e�ect into the marginal adaptation

e�ect of each input and responsiveness of inputs to temperature rises, this part of empirical analysis

estimates the marginal adaptation e�ects of all the four inputs. The speci�cation with rich �xed e�ects
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and local time trends allows us to control for endogenous factors that may generate adaptation e�ects

through mechanisms other than ex post adjustments of the four examined inputs. The results of the

baseline model with temperature-inputs interactions are robust to speci�cations controlling for a proxy

for overall temperature-related adaptation mechanisms and observable confounders in parallel with the

four inputs.

Third, the decline in the temperature sensitivity of crop yields mainly occurs in counties with

irrigation expansion, suggesting that irrigation is a mechanism for the ex post adaptation e�ect. Our

calculation shows that irrigation coverage has increased by about 14 percentage points in counties with

irrigation expansion and can explain about 25% to 30% of the decline in the temperature sensitivity of

crop yields. This opens a new avenue for future research to explore additional adaptation mechanisms

such as technology innovation. In addition, the decline in the impacts of extreme precipitation only

occurs in 25% of all the counties which experience the highest level of increase in irrigation coverage.

The majority in the whole sample do not adapt to extreme precipitation shocks.

Adjustment of inputs is generally regarded as adaptation. We de�ne ex ante adaptation as inputs

adjusted before weather realizes and ex post adaptation as inputs adjusted after weather realizes. The

input-driven decline in the impacts of unanticipated temperature shock across time periods re�ects

e�ect of ex post adaptation to experienced weather. This implies that weather realization can identify

ex post adaptation e�ects, which extends the classical panel approach to the area of adaptation esti-

mation. The irrigation coverage used in this paper re�ects irrigation capital stock and therefore is a

measure of ex ante adaptation. The statistical association of temperature sensitivity reduction with

increase in irrigation coverage suggests that ex ante adaptation is complementary to rather than sub-

stitute for ex post adaptation, which is a new statement of the relationship between ex ante adaptation

and ex post adaptation that has not been stressed in the literature.

As a critical strategy for climate change, adaptation is believed to be taken only ex ante. With

strong evidence that ex ante adaptation facilitates ex post adaptation, this paper demonstrates that

ex ante investment in inputs bene�ts both the ex ante adaptation e�ect and ex post adaptation e�ect.

Focusing only on ex ante adaptation e�ect may thus underestimate the bene�ts of ex ante adoption of

adaptive inputs such as irrigation. There are at least two promising areas for future research in addition

to adaptation mechanisms other than irrigation. First, causal evidence on the adaptation e�ects of

agricultural inputs with quasi-experimental variation is highly needed. Second, it is important to

understand adaptation costs. We cannot evaluate adaptation against greenhouse gas mitigation for

the importance of climate change unless we understand the bene�ts and costs of adaptation equally

well.
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Tables

Table 1: Summary Statistics

1981-1995 1996-2010

Mean Min Max Std.Dev. Mean Min Max Std.Dev.

Corn

Yields(kg/ha) 4262.52 111.49 14764.87 1772.02 5697.73 100.24 14359.79 1898.82
Temperature (◦C) 20.33 6.01 29.65 3.41 20.80 6.18 30.57 3.39
Precipitation (cm) 45.29 0.27 294.01 16.56 43.62 0.31 280.23 17.53
Humidity (%) 73.29 24.88 94.83 8.08 70.41 27.00 93.51 9.29
Sunshine Hours 6.45 0.94 11.34 1.65 6.41 0.32 11.29 1.61
Wind Speed (m/s) 2.20 0.20 7.25 0.79 2.14 0.19 7.00 0.67
Evaporation (mm) 5.44 0.03 17.75 1.40 3.24 0.00 16.46 2.60
Ground Surface Temperature (◦C) 23.11 0.20 34.89 3.67 23.80 0.83 36.15 3.39

Observations 29083 31917

Soybean

Yields(kg/ha) 1361.23 66.82 7101.01 569.40 1818.71 103.64 7748.96 629.56
Temperature (◦C) 20.59 7.13 29.11 3.11 20.37 7.82 28.97 3.18
Precipitation (cm) 57.24 0.45 327.68 27.33 53.96 1.05 339.64 28.63
Humidity (%) 73.53 24.85 90.04 6.40 70.67 27.20 90.99 7.06
Sunshine Hours 6.66 2.37 11.20 1.24 6.77 0.33 10.94 1.51
Wind Speed (m/s) 2.41 0.34 6.27 0.67 2.29 0.33 6.93 0.60
Evaporation (mm) 5.63 0.13 17.53 0.94 3.63 0.00 16.36 2.59
Ground Surface Temperature (◦C) 23.57 0.70 34.56 3.16 23.63 0.69 35.04 2.94

Observations 27772 28084

Notes: The mean value of each variable is weighted by the corn and soybean planted area. Crop yields are de�ned as products
divided by planted area.

Table 2: Thresholds of Temperature (T) and Precipitation (P) for Linear Piecewise
Temperature-Yield Relationship: (T,P)

(a) Panel A: Corn

Period Length Nationwide North Northwest HHH South Southwest

10 years 28 ◦C, 49 cm 30 ◦C, 51cm 32 ◦C,26cm 28◦C, 55 cm 30 ◦C, 62 cm 30 ◦C, 41 cm
15 years 28 ◦C, 51 cm 30 ◦C, 51 cm 32 ◦C,24cm 28 ◦C, 54 cm 30 ◦C, 58 cm 30 ◦C, 41 cm

(b) Panel B: Soybean

Period Length Nationwide Northeast Northwest HHH South Southwest

10 years 26 ◦C, 48 cm 26 ◦C, 46 cm 29 ◦C, 19 cm 27 ◦C, 56 cm 27 ◦C, 60 cm 28 ◦C , 62 cm
15 years 26 ◦C, 44 cm 26 ◦C, 45 cm 28 ◦C, 25 cm 26 ◦C, 54 cm 27 ◦C, 60 cm 30 ◦C , 64 cm
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Table 3: Marginal Impacts of Temperature and Precipitation On Corn Yields Over Time Periods

(1) (2) (3) (4) (5)
Log Yields Log Yields Log Yields Log Yields Log Yields

period=1981 × GDD below T 0.0453∗∗∗ -0.0081 0.0071 -0.0096 0.0086
(0.0065) (0.0097) (0.0087) (0.0122) (0.0115)

period=1996 × GDD below T 0.0065 -0.0059 0.0029 -0.0057 0.0045
(0.0069) (0.0100) (0.0094) (0.0121) (0.0110)

period=1981 × GDD above T -0.3741∗∗∗ -0.2912∗∗∗ -0.2316∗∗∗ -0.2879∗∗∗ -0.2295∗∗∗

(0.0280) (0.0328) (0.0306) (0.0478) (0.0431)

period=1996 × GDD above T -0.0375∗ -0.0827∗∗∗ -0.1146∗∗∗ -0.0834∗∗ -0.1147∗∗∗

(0.0204) (0.0277) (0.0286) (0.0364) (0.0382)

period=1981 × Prec below T 0.1622∗∗∗ 0.1233∗∗ 0.1522∗∗∗ 0.1298 0.1781∗∗

(0.0533) (0.0542) (0.0474) (0.0916) (0.0700)

period=1996 × Prec below T 0.1916∗∗∗ 0.0795∗ 0.1085∗∗ 0.0936 0.1144∗∗

(0.0412) (0.0451) (0.0440) (0.0633) (0.0567)

period=1981 × Prec above T -0.3824∗∗∗ -0.1431∗∗∗ -0.2418∗∗∗ -0.1548∗∗ -0.2595∗∗∗

(0.0395) (0.0427) (0.0411) (0.0647) (0.0571)

period=1996 × Prec above T -0.3273∗∗∗ -0.2876∗∗∗ -0.1939∗∗∗ -0.2908∗∗∗ -0.1892∗∗∗

(0.0306) (0.0356) (0.0359) (0.0532) (0.0418)

p-Value for GDD below T : β1981 = β1996 0.0000 0.7332 0.5614 0.5538 0.5976

p-Value for GDD above T : β1981 = β1996 0.0000 0.0000 0.0002 0.0000 0.0114

p-Value for Prec. below P : β1981 = β1996 0.6577 0.5303 0.4905 0.7207 0.4541

p-Value for Prec. above P : β1981 = β1996 0.2424 0.0070 0.3180 0.0494 0.2991

Observations 59269 59269 59269 59274 59274
R squared 0.7525 0.7981 0.8421 0.0338 0.0210
Fixed E�ects Cty,Year Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr
County Quadratic Trend No No Yes No Yes
Std. Error Clustered Clustered Clustered Spatial HAC Spatial HAC
T threshold 28 ◦C 28 ◦C 28 ◦C 28 ◦C 28 ◦C
P threshold 51 cm 51 cm 51 cm 51 cm 51 cm
Distance N/A N/A N/A 500km 500km
Years of Lag N/A N/A N/A 5 years 5 years

Note: Each column corresponds to a separate regression varying on speci�cation of �xed e�ects and estimation of stan-
dard errors as speci�ed in the table. The dependent variable is log annual corn yields from 1981 to 2010. The regressions
are weighted by annual corn hectares. Only coe�cients on temperature and precipitation are reported but additional
climate variables are also included in the regression. Temperature threshold is 28 ◦C and precipitation threshold is 51
cm in all speci�cations. County-speci�c quadratic trends are controlled and standard errors are clustered at the county
level. The p values of testing hypotheses of coe�cient estimate distinction are provided immediately below the row of
coe�cient estimates. * p<0.1, ** p<0.05, *** p<0.01.
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Table 4: Marginal Impacts of Temperature and Precipitation On Soybean Yields Over Time Periods

(1) (2) (3) (4) (5)
Log Yields Log Yields Log Yields Log Yields Log Yields

period=1981 × GDD below T 0.0106 0.0245 0.0436∗∗∗ 0.0257∗ 0.0457∗∗∗

(0.0088) (0.0159) (0.0144) (0.0141) (0.0119)

period=1996 × GDD below T 0.0001 0.0197 0.0254∗ 0.0210 0.0272∗∗

(0.0091) (0.0161) (0.0147) (0.0140) (0.0110)

period=1981 × GDD above T -0.0323 -0.1642∗∗∗ -0.1527∗∗∗ -0.1621∗∗∗ -0.1563∗∗∗

(0.0218) (0.0294) (0.0261) (0.0273) (0.0273)

period=1996 × GDD above T 0.0626∗∗∗ -0.0737∗∗ -0.0882∗∗∗ -0.0747∗∗∗ -0.0873∗∗∗

(0.0194) (0.0295) (0.0266) (0.0249) (0.0262)

period=1981 × Prec below T 0.5136∗∗∗ 0.4807∗∗∗ 0.5274∗∗∗ 0.4968∗∗∗ 0.5393∗∗∗

(0.1259) (0.1263) (0.1196) (0.1470) (0.1137)

period=1996 × Prec below T 0.5910∗∗∗ 0.4020∗∗∗ 0.3906∗∗∗ 0.3991∗∗∗ 0.3913∗∗∗

(0.1111) (0.1097) (0.1140) (0.1146) (0.0989)

period=1981 × Prec above T -0.1885∗∗∗ -0.2408∗∗∗ -0.2035∗∗∗ -0.2455∗∗∗ -0.2059∗∗∗

(0.0477) (0.0516) (0.0443) (0.0404) (0.0339)

period=1996 × Prec above T -0.1890∗∗∗ -0.1610∗∗∗ -0.1382∗∗∗ -0.1559∗∗∗ -0.1366∗∗∗

(0.0312) (0.0349) (0.0340) (0.0312) (0.0258)

p-Value for GDD below T : β1981 = β1996 0.0001 0.2019 0.0003 0.1408 0.0036

p-Value for GDD above T : β1981 = β1996 0.0000 0.0001 0.0067 0.0000 0.0059

p-Value for Prec. below P : β1981 = β1996 0.6573 0.6637 0.4546 0.5936 0.3386

p-Value for Prec. above P : β1981 = β1996 0.9921 0.1574 0.1814 0.0646 0.0930

Observations 54327 54322 54322 54323 54323
R squared 0.6819 0.7265 0.7869 0.0238 0.0239
Fixed E�ects Cty,Year Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr
Trend No No Yes No Yes
Std. Error Clustered Clustered Clustered Spatial HAC Spatial HAC
T threshold 26 ◦C 26 ◦C 26 ◦C 26 ◦C 26 ◦C
P threshold 44 cm 44 cm 44 cm 44 cm 44 cm
Distance N/A N/A N/A 500 km 500 km
Years of Lag N/A N/A N/A 5 5

Note: Each column corresponds to a separate regression varying on speci�cation of �xed e�ects and estimation of
standard errors as speci�ed at the bottom of the table. The dependent variable is log annual soybean yields from 1981
to 2010. The regressions are weighted by annual soybean hectares. Only coe�cients on temperature and precipitation
are reported but additional climate variables are also included in the regression. Temperature threshold is 26 ◦C and
precipitation threshold is 44 cm in all speci�cations. County-speci�c quadratic trends are controlled and standard er-
rors are clustered at the county level. The p values of testing hypotheses of coe�cient estimate distinction are provided
immediately below the row of coe�cient estimates. * p<0.1, ** p<0.05, *** p<0.01.
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Table 5: Marginal Impacts of Temperature and Precipitation On Soybean Yields Over Time Periods

(1) (2) (3) (4) (5)
North HuangHuaiHai Northwest South Southwest

period=1981 × GDD below T 0.0426∗∗ -0.0172 -0.0300 0.0449∗∗ -0.0158
(0.0174) (0.0129) (0.0195) (0.0207) (0.0130)

period=1996 × GDD below T 0.0255 -0.0294∗∗ -0.0296 0.0257 0.0027
(0.0181) (0.0134) (0.0198) (0.0211) (0.0133)

period=1981 × GDD above T -0.9987∗∗∗ -0.2054∗∗∗ 0.0915 -0.2963∗∗∗ -0.1509∗∗

(0.2115) (0.0501) (0.1549) (0.0797) (0.0706)

period=1996 × GDD above T -0.4029∗∗ -0.0516 0.0696 -0.0607 -0.0293
(0.1777) (0.0360) (0.1417) (0.0497) (0.0502)

period=1981 × Prec below P 0.1068 0.2638∗∗∗ 0.1236 0.0429 -0.1584∗∗

(0.1458) (0.0689) (0.4096) (0.0942) (0.0756)

period=1996 × Prec below P 0.3085∗∗∗ 0.0674 0.2998 0.0483 0.0319
(0.1130) (0.0444) (0.2614) (0.0556) (0.0526)

period=1981 × Prec above P -0.4479∗∗∗ -0.1591∗ -0.2592 -0.0543 -0.0554
(0.0870) (0.0840) (0.6325) (0.0494) (0.0600)

period=1996 × Prec above P -0.4036∗∗∗ -0.1803∗∗∗ -0.3608 -0.1012∗∗∗ -0.1703∗∗

(0.1153) (0.0430) (0.3986) (0.0270) (0.0702)

p-Value for GDD below T : β1981 = β1996 0.3915 0.2936 0.9825 0.1049 0.0869

p-Value for GDD above T : β1981 = β1996 0.0256 0.0018 0.9174 0.0115 0.0949

p-Value for Prec. below P : β1981 = β1996 0.3041 0.0105 0.7151 0.9563 0.0152

p-Value for Prec. above P : β1981 = β1996 0.7298 0.8059 0.8987 0.3748 0.1912

Observations 10532 16852 3031 16513 12341
R squared 0.8288 0.7909 0.9032 0.8912 0.8956
Fixed E�ects Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr
County Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 30 ◦C 28 ◦C 32 ◦C 30 ◦C 30 ◦C
P threshold 51 cm 54 cm 24 cm 58 cm 41 cm

Note: This table presents region-heterogeneous impacts of extreme temperatures on corn yields over time periods. Divi-
sion of corn regions is illustrated in Figure A.1. Each column is from a separate regression corresponding to a particular
corn region. The regression model is presented in equation (5) and the rest model speci�cations are the same as equation
(5). The North region includes province-level administrative districts of Heilongjiang, Jilin, Liaoning, Inner Mongolia,
Northern Shaanxi, Northern Hebei (north to the Great Wall) and Southern Gansu. The Huanghuaihai (HHH) region
includes Beijing, Tianjin, Southern Hebei (south to the Great Wall), Shandong, Henan, Shanxi, Middle Shaanxi, North-
ern Jiangsu (north to Huai River) and Northern Anhui (north to Huai River). The Northwest region includes Xinjiang,
Ningxia and Northern Gansu. The South region includes Southern Jiangsu(south to Huai River), Southern Anhui(south to
Huai River), Eastern Hubei, Eastern Hunan, Jiangxi, Shanghai, Zhejiang, Fujian, Guangdong, Guangxi and Hainan. The
Southwest region includes Southern Shaanxi, Western Hubei, Western Hunan, Chongqing, Sichuan, Guizhou and Yunnan.
The Plateau region includes Qinghai and Tibet (Xizang). * p<0.1, ** p<0.05, *** p<0.01.
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Table 6: The Heterogeneous Temperature-Yield Relationships of Soybean By Regions

(1) (2) (3) (4) (5)
Northeast HHH Northwest South Southwest

period=1981 × GDD below T 0.0609∗ 0.0075 0.3351∗∗∗ 0.0098 0.0259
(0.0347) (0.0306) (0.1225) (0.0106) (0.0247)

period=1996 × GDD below T 0.0562 0.0477 0.3191∗∗ 0.0111 -0.0024
(0.0346) (0.0312) (0.1244) (0.0103) (0.0277)

period=1981 × GDD above T -0.5078∗∗∗ -0.1590∗∗∗ -1.6760∗∗∗ 0.0200 -0.2450∗∗

(0.1457) (0.0597) (0.5607) (0.0256) (0.1032)

period=1996 × GDD above T -0.5659∗∗∗ -0.0345 -0.1357 0.0407 -0.1334
(0.1190) (0.0547) (0.3495) (0.0302) (0.0865)

period=1981 × Prec below P 0.3211 0.2350∗∗ -3.9404 -0.2040∗ 0.7679∗∗∗

(0.2669) (0.1106) (2.4742) (0.1110) (0.2470)

period=1996 × Prec below P 0.2609 0.1326 -1.4733 -0.0135 0.4525∗∗∗

(0.1938) (0.1033) (1.0640) (0.0576) (0.1732)

period=1981 × Prec above P -0.1273 -0.7281∗∗∗ 0.7403 -0.0652∗∗∗ -0.1034
(0.1027) (0.1707) (0.6737) (0.0242) (0.0789)

period=1996 × Prec above P -0.2637∗ -0.1654∗∗ -0.6868∗∗ -0.0846∗∗∗ 0.0243
(0.1394) (0.0743) (0.3144) (0.0194) (0.0463)

p-Value for GDD below T : β1981 = β1996 0.9110 0.2674 0.9386 0.7258 0.1514

p-Value for GDD above T : β1981 = β1996 0.7580 0.0316 0.0230 0.1753 0.1802

p-Value for Prec. below P : β1981 = β1996 0.8722 0.4811 0.3353 0.1343 0.2632

p-Value for Prec. above P : β1981 = β1996 0.4277 0.0023 0.0390 0.5100 0.1502

Observations 5870 16393 1750 21438 5860
R squared 0.6758 0.7983 0.7998 0.8941 0.8661
Fixed E�ects Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr
County Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 26 ◦C 26 ◦C 28 ◦C 27 ◦C 30 ◦C
P threshold 45 cm 54 cm 25 cm 60 cm 64 cm

Note: This table presents region-heterogeneous impacts of high temperature on soybean yields over time periods. Divi-
sion of corn regions is illustrated in Figure A.1. Each column is from a separate regression corresponding to a particular
corn region. The regression model is presented in equation (5) and all the rest model speci�cations are the same as equa-
tion (5). The Northeast region includes province-level administrative districts of Heilongjiang, Jilin, Liaoning, Eastern
Inner Mongolia. The Huanghuaihai (HHH) region includes Beijing, Tianjin, Southern Hebei (south to the Great Wall),
Shandong, Henan, Southern Shanxi, Middle Shaanxi, Southeastern Gansu, Northern Jiangsu (north to Huai River) and
Northern Anhui (north to Huai River). The Northwest region includes Western Inner Mongolia, Xinjiang and Most of
Gansu. The South region includes Southern Jiangsu(south to Huai River), Southern Anhui(south to Huai River), Shang-
hai, Zhejiang, Fujian, Guangdong, Guangxi, Hainan, Hubei, Eastern Hunan, Jiangxi, Chongqing and Eastern Sichuan.
The Southwest region includes Western Hunan, Western Sichuan, Guizhou and Yunnan. The Plateau region includes
Qinghai and Tibet (Xizang). * p<0.1, ** p<0.05, *** p<0.01.
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Table 7: Interaction E�ects of Inputs Change with High Temperatures for Corn Counties

(1) (2) (3) (4) (5)

GDD above T -0.3005∗∗∗ -0.1516∗∗∗ -0.1387∗∗∗ -0.1532∗∗∗ -0.2640∗∗∗

(0.0484) (0.0371) (0.0406) (0.0364) (0.0489)

GDD above T × ∆ Irrigation (%) 0.2576∗∗∗ 0.2310∗∗∗

(0.0558) (0.0594)

GDD above T × ∆ Machinery (Kw./Ha.) 0.0016 -0.0023
(0.0050) (0.0037)

GDD above T × ∆ Fertilizer(Tons of Ha.) -0.0676 -0.0839
(0.0970) (0.0878)

GDD above T × ∆ Electricity (Kwh. per capita) 0.0015 -0.0024
(0.0168) (0.0117)

Observations 59255 53655 53645 58332 53475
R squared 0.8664 0.8444 0.8444 0.8423 0.8727
County FE Yes Yes Yes Yes Yes
Prov-Year FE Yes Yes Yes Yes Yes
Cty-Quadratic Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 28 ◦C 28 ◦C 28 ◦C 28 ◦C 28 ◦C
P threshold 51 cm 51 cm 51 cm 51 cm 51 cm

Note: The dependent variable is log corn yields. The change of all the agricultural inputs are calculated with
the di�erence in the mean values between the pre-1996 and post-1996 period. The low temperature variable
for interactions is the growing degree days above 28 ◦C. Precipitation and additional climate variables are
included. The standard error is clustered at county level and the regressions are weighted by annual corn
planted area. * p<0.1, ** p<0.05, *** p<0.01.
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Table 8: Robustness Analysis of the Adaptation E�ects of Agricultural Inputs on the Relationship
between Extreme High Temperatures and Yields over 1981 to 2010

(1) (2) (3) (4) (5)

GDD above T -0.1881∗∗∗ -0.1347∗∗∗ -0.1334∗∗∗ -0.1294∗∗∗ -0.2080∗∗∗

(0.0376) (0.0242) (0.0241) (0.0228) (0.0417)

GDD above T × Irrigation (%) 0.1293∗∗∗ 0.1486∗∗∗

(0.0478) (0.0524)

GDD above T × Machinery (Kw./Ha.) 0.0007 -0.0002
(0.0005) (0.0035)

GDD above T × Fertilizer (Tons of Ha.) 0.0040∗ 0.0050
(0.0024) (0.0250)

GDD above T × Electricity (Kwh. per capita) -0.0151 -0.0163
(0.0272) (0.0228)

Observations 54263 54287 54287 54252 54174
P1
R squared 0.8175 0.8201 0.8201 0.8201 0.8211
County FE Yes Yes Yes Yes Yes
Prov-Year FE Yes Yes Yes Yes Yes
Cty-Quadratic Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 26 ◦C 26 ◦C 26 ◦C 26 ◦C 26 ◦C
P threshold 44 cm 44 cm 44 cm 44 cm 44 cm

Note: The dependent variable is log corn yields. The change of all the agricultural inputs are calculated
with the di�erence in the mean values between the pre-1996 and post-1996 period. The low temperature
variable for interactions is the growing degree days above 28 ◦C. Precipitation and additional climate
variables are included. The standard error is clustered at county level and the regressions are weighted by
annual soybean planted area. * p<0.1, ** p<0.05, *** p<0.01.
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Table 9: Robustness Analysis of the Adaptation E�ects of Agricultural Inputs on the Relationship
between Extreme High Temperatures and Yields over 1981 to 2010

(1) (2) (3) (4)
Corn Corn Soybean Soybean

GDD above T × ∆ Irrigation (%) 0.2297∗∗∗ 0.2032∗∗∗ 0.1491∗∗∗ 0.1293∗∗

(0.0472) (0.0555) (0.0525) (0.0644)

GDD above T × ∆ Machinery (Kw./Ha.) -0.0026 -0.0009 -0.0002 0.0013
(0.0029) (0.0030) (0.0035) (0.0037)

GDD above T × ∆ Fertilizer (Tons /Ha.) -0.0809 -0.0321 0.0056 -0.0055
(0.0826) (0.0976) (0.0250) (0.0261 )

GDD above T × ∆ Electricity (Kwh. per capita) -0.0021 0.0037 -0.0159 -0.0070
(0.0102) (0.0155) (0.0228) (0.0298)

∆ GDP × Temperature No Yes No Yes
∆ (Cargo by Road) × Temperature No Yes No Yes
Temperature × Year Yes Yes Yes Yes

Observations 53475 37617 54174 40178
R squared 0.8727 0.8601 0.8211 0.8176
County FE Yes Yes Yes Yes
Prov-Year FE Yes Yes Yes Yes
Cty-Quadratic Trend Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered
T threshold 28 ◦C 28 ◦C 26 ◦C 26 ◦C
P threshold 51 cm 51 cm 44 cm 44 cm

Note: This table presents the adaptation e�ects of agricultural inputs on the extreme-
temperature-yield relationship. Each column is from a separate regression. The dependent
variable is log crop yields. All the agricultural inputs, local GDP and cargo amount by road
are measured with the di�erence in the mean values between the pre-1996 and post-1996 pe-
riod. The GDP and cargo amount are in the prefecture level. The temperature variables used
for interactions are the growing degree days above the thresholds. Precipitation and additional
climate variables are included. The standard error is clustered at county level and the regres-
sions are weighted by annual soybean planted area. * p<0.1, ** p<0.05, *** p<0.01.
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Figures

Figure 1: Crop Productivity of Two Periods As A Function of Temperature
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Figure 2: Temperature and Precipitation Change in the Corn and Soybean Area Over Time

(a) Temperature Change in the Corn Area (b) Precipitation Change in the Corn Area

(c) Temperature Change in the Soybean Area (d) Precipitation Change in the Soybean Area

Notes: Panel (a) and (c) plot county-level average of corn and soybean yields over 1981-2010, respectively. Panel
(b) and (d) plot county-level percentage change in the average of corn and soybean yields during 1981-1995
relative to that during 1996-2010, respectively.
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Figure 3: Annual Average of Crop Yields and Crop Yield Change Over Time

(a) 30-year Average of Corn Yields (b) Percentage Change of Period-Averaged Corn
Yields

(c) 30-year Average of Soybean Yields (d) Percentage Change of Period-Averaged Soybean
Yields

Notes: Panel (a) and (c) plot county-level annual average of corn and soybean yields over 1981-2010, respectively.
Panel (b) and (d) plot county-level percentage change in the average of corn and soybean yields in the pre-1996
period relative to that in the post-1996 period, respectively.
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Figure 4: Distribution of Temporal Change of Agricultural Inputs

(a) Distribution of Irrigation Coverage Change (%) (b) Distribution of Machinery Power Change
(kilowatt/ha.)

(c) Distribution of Fertilizer Change (ton/ha.) (d) Distribution of Change (kw · h per capita)

Notes: This �gure presents the distribution of input change over 1981 to 2010. The change of the input variables
is calculated by the di�erence between the 1981-1995 average and 1996-2010 average. The solid line depicts
zero and the dashed line is the mean of the change. The mean value for the change of each input is presented
in the histogram.
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Figure 5: Correlation of Inputs Change with Temperature Change

(a) Corn Counties (b) Soybean Counties

Notes: Figure 5 presents the correlations between the temporal change in the four inputs and that in extreme
temperature exposure. The correlation is estimated by regressing input change on temperature change. The
change of temperature and inputs is calculated by the di�erence of the mean values between the pre-1996
period and the post-1996 period. The extreme temperature exposure for corn (soybean) counties is measured
by degree days for temperature above 28 (26) ◦C. The unit of the extreme temperature exposure is 100 degree
days. The regressions estimating the correlations denoted by triangles control for the province �xed e�ect while
the regressions for correlations denoted by circles do not. The stand errors for both types of regressions are
clustered at the county level.

Figure 6: The Planted Area of Corn and Soybean and the Corresponding Share in the Total Planted
Area Over Time

(a) The Planted Area of Corn and Soybean (b) The Percentage of Total Farmland Planted to
Corn and Soybean

Notes: The planted area of corn or soybean for each year is calculated by aggregating the corn or soybean
planted area of all the counties in each year. The corresponding share is calculated with the percentage of
aggregate corn or soybean area accounting for the total planted area for all crops.
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Figure 7: Robustness Analysis of Temperature-Yield Relationship Using Spatial HAC Standard
Errors

(a) Corn: Lag=3 years (b) Corn: Lag=5 years

(c) Soybean: Lag=3 years (d) Soybean: Lag=5 years

Notes: In Figure 7, we estimate the model in equation (5) with spatial heteroskedastic autocorrelated standard
error using the stata code provided by Hsiang (2010). The regression is weighted by annual planted area for
each crop. In each panel, the cuto� distance is speci�ed at the horizontal axis. For each distance choice, we
report the point estimate and the corresponding con�dence interval at the 95% signi�cance level for the e�ects
of 100-day exposure to temperature above the threshold in the pre-1996 period (denoted by the circle symbol)
and the di�erence in the e�ects between the pre-1996 and post-1996 period (denoted by the triangle symbol).
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Figure 8: Marginal Impacts of Extreme Temperatures on Corn and Soybean Yields by Temperature
Thresholds

(a) Corn: Nationwide (b) Soybean: Nationwide

Note: Figure 8 presents heterogeneous impacts of extreme temperature on corn and soybean yields by tem-
perature threshold. The alternative thresholds are speci�ed below the horizontal axis. We estimate the model
in equation (5) using the speci�ed temperature thresholds. The regressions are weighted by annual planted
area for each crop and the standard error is clustered at the county level. For each threshold choice, we report
the point estimate and the corresponding con�dence interval at the 95% signi�cance level for the e�ects of
100-day exposure to temperature above the threshold in the pre-1996 period (denoted by the circle symbol)
and the di�erence in the e�ects between the pre-1996 and post-1996 period (denoted by the triangle symbol).
Heterogeneous impacts of extreme temperature by temperature threshold for each region are reported in Figure
B.1 and Figure B.2 of Appendix B.
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Figure 9: Sensitivity of Results to Starting Year and Length of Time Period
�Using 5 years or 10 years as a Period

(a) GDD above 28 ◦C: 5 years (b) GDD above 28 ◦C: 10 years

(c) GDD above 26 ◦C: 5 years (d) GDD above 26 ◦C: 10 years

Note: Figure 9 presents the evolution of extreme temperature e�ect on crop yields estimated with model in
equation (5) using 5 years or 10 years as a period. The regressions are weighted by annual planted area for each
crop and the standard error is clustered at the county level. In each panel, we report the point estimate and the
corresponding con�dence interval at the 95% signi�cance level for the e�ects of 100-day exposure to temperature
above the threshold in the �rst period (period 1981-1985 or period 1981-1990 denoted by the circle symbol) and
the di�erence in the e�ects between the following period and the �rst period (denoted by the triangle symbol).
The initial year for each period is speci�ed below the horizontal axis. The analysis of sensitivity to period length
using alternative temperature thresholds are reported in Figure B.3 to Figure B.6 of Appendix B.
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Figure 10: Sensitivity of Results to Model Speci�cation Using Polynomial Time Trend
�The Evolution of Marginal Impacts of Extreme Temperatures on Crop Yields

(a) Corn:Evolution of Marginal Impacts of GDD above 28 ◦C

(b) Soybean: Evolution of Marginal Impacts of GDD above 26 ◦C
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Figure 11: The Heterogeneous Evolution of Extreme Temperature Impacts by Categories of Irrigation
Coverage Change

(a) Corn: GDD above 28 ◦C (b) Soybean: GDD above 26 ◦C

Note: Underneath the horizontal axis in each panel, the uninteracted model is the model in equation (6) and
the rest four labels correspond to the evolution of the extreme temperature e�ects by the category of irrigation
coverage change, which is estimated with equation (7). "<25%" denotes the category of counties with irrigation
coverage change below the 25th percentile of the nationwide distribution; "25%∼50%" denotes the category of
counties with irrigation coverage change above the 25th percentile but below the 50th percentile; "50%∼ 75%"
denotes the category of counties with irrigation coverage change above the 50th percentile but below the 75th
percentile; ">75%" denotes the category of counties with irrigation coverage change above the 75th percentile.
We report the point estimate and the corresponding con�dence interval at the 95% signi�cance level for the
e�ects of 100-day exposure to temperature above the threshold in the pre-1996 period (denoted by the circle
symbol) and the di�erence in the e�ects between the pre-1996 and post-1996 period (denoted by the triangle
symbol).
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Figure 12: The Temporal Evolution of Excessive Precipitation Impacts by Categories of Irrigation
Coverage Change

(a) Corn: Prec above 51 cm (b) Soybean: Prec above 44 cm

Note: Underneath the horizontal axis in each panel, the uninteracted model is the model in equation (6) and
the rest four labels correspond to the evolution of the extreme precipitation e�ects by the category of irrigation
coverage change, which is estimated with equation (7). "<25%" denotes the category of counties with irrigation
coverage change below the 25th percentile of the nationwide distribution; "25%∼50%" denotes the category of
counties with irrigation coverage change above the 25th percentile but below the 50th percentile; "50%∼ 75%"
denotes the category of counties with irrigation coverage change above the 50th percentile but below the 75th
percentile; ">75%" denotes the category of counties with irrigation coverage change above the 75th percentile.
We report the point estimate and the corresponding con�dence interval at the 95% signi�cance level for the
e�ects of 100-day exposure to temperature above the threshold in the pre-1996 period (denoted by the circle
symbol) and the di�erence in the e�ects between the pre-1996 and post-1996 period (denoted by the triangle
symbol).
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Appendices

A Figures and Tables on Summary Statistics of Data

Figure A.1: The Maps of Crop Regions: Corn and Soybean

(a) The Map of Corn Regions (b) The Map of Soybean Regions

Notes: Figure A.1 depicts the growing regions of corn and soybean. Most of the regions are directly named after
their geographical locations. The HuangHuaiHai (HHH) region is largely located on the HuangHuaiHai Plain
which is a alluvial plain created by the deposition of sediment over a long period of time by Huang (Yellow)
River, Huai River and Hai River. Similarly, the Loess region is largely the area of the Loess Plateau which is
named for its most distinctive feature, the highly friable loess soil that has been deposited by wind storms over
the ages.

Figure A.2: Growing Seasons of Crops By Region: Corn and Soybean

(a) Growing Seasons of Corn By Region (b) Growing Seasons of Soybean By Region

Notes: This graph exhibits the full growing season of all the main types of crops in terms of planted hectares. For
example, the main types of soybean planted in the South are spring, summer and autumn and the consecutive
growing seasons of the three types of soybean span over the period from April to August.
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Figure A.3: The Locations of Weather Stations from 1981 to 2010

Notes: The black dots in the map denote the locations of all the 824 weather stations. All the 824 stations
remained to be active from 1981 to 2010, avoiding selection bias created by opening and closure of weather
stations from time to time.
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B Temperature-Yield Relationship

B.1 The Role of Additional Climate Variables in the Temperature-Yield Relationship

Table B.1: The Evolution of Temperature-Yield Relationship of Corn: the Impacts of Additional
Climate Variables

(1) (2) (3) (4) (5)

period=1981 × Humidity 4.8558∗∗∗ 3.5170∗∗ 5.4263∗∗∗ 3.4188∗ 5.2651∗∗∗

(1.3424) (1.4536) (1.3551) (1.8339) (1.6802)
period=1996 × Humidity 3.0706∗∗∗ 1.0243 2.4456∗∗ 0.9064 2.5533∗∗

(0.7100) (0.9627) (0.9502) (1.2051) (1.0983)
period=1981 × Humidity 2 -2.7303∗∗∗ -2.5158∗∗ -3.4348∗∗∗ -2.4548∗ -3.3423∗∗∗

(0.9218) (0.9907) (0.9095) (1.2996) (1.1992)
period=1996 × Humidity 2 -2.0531∗∗∗ -0.5720 -1.4890∗∗ -0.4797 -1.5943∗∗

(0.5002) (0.6679) (0.6532) (0.8403) (0.7463)
period=1981 × Sunshine 4.5166∗ -1.5612 0.3593 -3.1237 -0.0303

(2.4985) (2.6176) (2.2980) (3.7980) (3.2589)
period=1996 × Sunshine 2.7386∗ 8.7506∗∗∗ 4.9695∗∗ 8.6309∗∗∗ 4.4465∗

(1.5250) (2.3257) (1.9995) (3.0080) (2.6196)
period=1981 × Sunshine 2 1.1678 31.9171 14.2726 40.7551 16.7578

(18.4792) (20.4081) (19.3290) (29.8051) (26.1956)
period=1996 × Sunshine 2 0.1462 -53.1059∗∗∗ -26.4431 -50.6477∗∗ -23.5103

(14.0209) (20.0276) (18.5532) (24.1883) (21.8004)
period=1981 × Wind 12.6822∗∗∗ 2.9003 1.7830 3.1931 1.9452

(4.4450) (4.3263) (4.2325) (4.0846) (3.8398)
period=1996 × Wind -2.5224 -4.5894 -1.9539 -4.7509 -2.1635

(3.9878) (4.0738) (4.3082) (4.0699) (4.0810)
period=1981 × Wind 2 -284.8097∗∗∗ 16.3355 74.9892 13.8005 70.4159

(94.9079) (87.9925) (93.9014) (76.2907) (75.1698)
period=1996 × Wind 2 100.4426 178.5359∗∗ 111.2850 181.6654∗∗ 115.4660

(86.8305) (86.6485) (98.2608) (82.4844) (81.9532)
period=1981 × Evaporation -12.4397∗∗∗ -12.8965∗∗∗ -6.6016∗∗∗ -11.0622∗∗∗ -6.8851∗∗

(3.5828) (2.7598) (2.4201) (3.0015) (2.8389)
period=1996 × Evaporation -1.2328∗ -0.7532 -0.7776 -0.6220 -0.6315

(0.6641) (0.7929) (1.0957) (0.7254) (0.8274)
period=1981 × Evaporation 2 77.3252∗∗∗ 75.6097∗∗∗ 46.8512∗∗ 62.5565∗∗∗ 47.4403∗∗

(26.5534) (21.5832) (20.8486) (19.5488) (19.8966)
period=1996 × Evaporation 2 2.7237 1.9537 4.0656 0.2661 1.6231

(6.4317) (8.8349) (9.9723) (8.0898) (7.7328)
period=1981 × GSTDD below T 0.0052 0.0136∗∗∗ 0.0078∗ 0.0137∗∗∗ 0.0081∗∗

(0.0047) (0.0036) (0.0041) (0.0044) (0.0041)
period=1996 × GSTDD below T 0.0136∗∗∗ -0.0011 -0.0002 -0.0016 -0.0000

(0.0041) (0.0037) (0.0041) (0.0046) (0.0041)
period=1981 × GSTDD above T -0.0012 -0.0051 -0.0014 -0.0052 -0.0008

(0.0070) (0.0060) (0.0052) (0.0076) (0.0071)
period=1996 × GSTDD above T -0.0187∗∗∗ -0.0153∗∗ -0.0131∗ -0.0149∗∗ -0.0125∗∗

(0.0068) (0.0072) (0.0079) (0.0061) (0.0059)

Observations 59269 59269 59269 59274 59274
R squared 0.7525 0.7981 0.8421 0.0338 0.0210
Fixed E�ects Cty,Year Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr
Trend No No Yes No Yes
Std. Error Clustered Clustered Clustered Spatial HAC Spatial HAC
T threshold 28 ◦C 28 ◦C 28 ◦C 28 ◦C 28 ◦C
P threshold 51 cm 51 cm 51 cm 51 cm 51 cm
Distance N/A N/A N/A 500 km 500 km
Years of Lag N/A N/A N/A 5 5

Note: This table follows Table 3 to present the impacts of additional climate variables on corn yields including
humidity, sunshine duration, wind speed, evaporation and ground surface temperature. This table and Table 3
are based on the same regression. Each column corresponds to a separate regression varying on speci�cation of
�xed e�ects and estimation of standard errors as speci�ed in the table. The dependent variable is log annual
corn yields from 1981 to 2010. The regressions are weighted by annual corn hectares. Temperature threshold is
28 ◦C and precipitation threshold is 51 cm in all speci�cations. County-speci�c quadratic trends are controlled
and standard errors are clustered at the county level.
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Table B.2: The Evolution of Temperature-Yield Relationship of Soybean: the Impacts of Additional
Climate Variables

(1) (2) (3) (4) (5)

period=1981 × Humidity 0.4105 3.3967 1.8653 3.3451 2.0624
(2.4224) (2.9606) (3.0894) (2.8254) (2.2054)

period=1996 × Humidity 4.9127∗∗ 3.0832 2.8996 3.4287 2.7038
(1.9167) (2.5472) (2.3184) (2.5587) (1.9574)

period=1981 × Humidity 2 -0.6570 -2.4395 -1.3947 -2.3723 -1.5312
(1.5859) (1.9907) (2.0197) (1.8879) (1.5082)

period=1996 × Humidity 2 -3.1913∗∗ -1.5905 -1.9717 -1.8375 -1.8703
(1.2839) (1.7860) (1.6238) (1.7915) (1.3251)

period=1981 × Sunshine 11.5723∗∗ 3.3262 0.5132 3.2316 -0.0231
(4.8105) (6.4674) (5.7232) (5.5624) (4.8487)

period=1996 × Sunshine -0.1673 3.1777 11.7199∗∗ 3.3445 11.5340∗∗∗

(3.9256) (5.1432) (5.4419) (5.1919) (4.3031)
period=1981 × Sunshine 2 -46.3149 9.1336 25.5045 10.7672 29.0898

(38.8951) (53.1490) (48.2396) (48.5647) (39.7375)
period=1996 × Sunshine 2 -8.6529 4.2461 -64.2970 2.7104 -64.6412∗

(28.8306) (40.0742) (40.2122) (43.4510) (36.1032)
period=1981 × Wind -0.6193 -2.9659 1.5109 -3.3065 1.4699

(7.0333) (6.9804) (7.4539) (5.9724) (4.8800)
period=1996 × Wind -4.7204 0.2266 1.8803 -0.4208 1.2214

(7.3825) (7.5822) (7.6391) (6.0988) (4.9070)
period=1981 × Wind 2 63.8687 41.4636 68.0034 47.4491 64.0503

(124.5652) (129.5193) (141.3947) (146.0938) (104.6091)
period=1996 × Wind 2 240.8413 79.0646 80.3120 92.1338 89.1135

(157.8163) (160.5469) (167.4935) (148.4572) (110.2699)
period=1981 × Evaporation -1.3909 1.3168 0.4985 -0.1275 -0.4049

(4.5617) (4.9764) (4.6616) (4.7136) (3.4755)
period=1996 × Evaporation 0.1464 1.0166 -0.8119 1.0141 -0.6465

(1.1356) (1.3028) (1.5506) (1.1316) (1.1587)
period=1981 × Evaporation 2 -60.6455 -45.8914 -18.5320 -32.4938 -9.7248

(42.6463) (45.9285) (42.6171) (40.9255) (30.2648)
period=1996 × Evaporation 2 -24.2417∗ -21.2860 -13.9129 -21.0577 -16.1461

(12.7238) (15.4893) (16.3715) (15.6708) (15.3188)
period=1981 × GSTDD below T 0.0128∗∗∗ 0.0027 0.0008 0.0030 0.0006

(0.0037) (0.0042) (0.0038) (0.0034) (0.0030)
period=1996 × GSTDD below T 0.0192∗∗∗ 0.0079∗ 0.0115∗∗ 0.0080∗∗∗ 0.0113∗∗∗

(0.0036) (0.0041) (0.0051) (0.0029) (0.0034)
period=1981 × GSTDD above T -0.0207∗∗∗ -0.0050 -0.0062 -0.0051 -0.0062

(0.0075) (0.0074) (0.0070) (0.0052) (0.0042)
period=1996 × GSTDD above T -0.0227∗∗∗ -0.0133∗∗ -0.0211∗∗ -0.0126∗∗∗ -0.0211∗∗∗

(0.0065) (0.0065) (0.0085) (0.0044) (0.0046)

Observations 54327 54322 54322 54323 54323
R squared 0.6819 0.7265 0.7869 0.0238 0.0239
Fixed E�ects Cty,Year Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr Cty,Prov-Yr
Trend No No Yes No Yes
Std. Error Clustered Clustered Clustered Spatial HAC Spatial HAC
T threshold 26 ◦C 26 ◦C 26 ◦C 26 ◦C 26 ◦C
P threshold 44 cm 44 cm 44 cm 44 cm 44 cm
Distance N/A N/A N/A 500 km 500 km
Years of Lag N/A N/A N/A 5 5

Note: This table follows Table 4 to present the impacts of additional climate variables on soybean yields
including humidity, sunshine duration, wind speed, evaporation and ground surface temperature. All the spec-
i�cations of the regression models are identical to Table 4. Each column corresponds to a separate regression
varying on speci�cation of �xed e�ects and estimation of standard errors as speci�ed in the table. The depen-
dent variable is log annual soybean yields from 1981 to 2010. The regressions are weighted by annual soybean
hectares. Temperature threshold is 26 ◦C and precipitation threshold is 44 cm in all speci�cations. County-
speci�c quadratic trends are controlled and standard errors are clustered at the county level.
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Figure B.1 and B.2 report the estimation of marginal impacts of extreme temperatures on corn and

soybean yields using multiple temperature thresholds for the whole nationwide sample and sub-regions

based on cropping regions for each crop. The division of cropping regions for corn and soybean are based

on Figure A.1. The two �gures are the robustness analysis of estimation sensitivity to temperature

thresholds. The thresholds are introduced as the labels for x-axis. Figure B.1 is about corn and Figure

B.2 is about soybean. All the �gures depict the point estimate and the corresponding 95 % con�dence

interval for the coe�cient for GDD above the threshold.
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Figure B.1: Marginal Impacts of Extreme Temperatures on Corn Yields by Temperature Thresholds

(a) Corn: Nationwide (b) Corn: North

(c) Corn: Huanghuaihai (HHH) (d) Corn: Northwest

(e) Corn: South (f) Corn: Southwest
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Figure B.2: Marginal Impacts of Extreme Temperatures on Soybean Yields by Temperature
Thresholds

(a) Soybean: Nationwide (b) Soybean: North

(c) Soybean: Huanghuaihai (HHH) (d) Soybean: Northwest

(e) Soybean: South (f) Soybean: Southwest

Figure B.3 to B.6 report the estimation of marginal impacts of extreme temperatures on corn

and soybean yields estimated through a period-wise panel model in equation (5) using 5 years or

10 years as a period to test the sensitivity of results to the choice of endpoints and length of time

periods. In addition, we try other temperature thresholds apart from 28 ◦C for the corn and 26 ◦C for
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the soybean to avoid misspeci�cation of temperature threshold for the growing degree days (we only

control province-by-year �xed e�ects when we select the thresholds). Figure B.3 and B.4 are about

corn yields and Figure B.5 and B.6 are about soybean yields. All the �gures depict the point estimate

and the corresponding 95 % con�dence interval for the coe�cient for GDD above the threshold of each

period which is denoted by the starting year of the period on the horizontal axis. For example, 1981

denotes the period 1981-1985 if 5-year period is used in the regression. The coe�cient of the �rst period

is the marginal impact of extreme high temperature (measured by GDD above the threshold) and the

coe�cients of all the later periods are the di�erences of the marginal impacts of extreme temperature

in the corresponding period relative to the impact in the �rst period. The initial year of each period

is speci�ed in the label of the horizontal axis.

Figure B.3: Marginal Impacts of Extreme Temperatures on Corn Yields By Temperature Thresholds:
5 Years as a Period

(a) GDD above 29 ◦C (b) GDD above 30 ◦C

(c) GDD above 31 ◦C (d) GDD above 32 ◦C
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Figure B.4: Marginal Impacts of Extreme Temperatures on Corn Yields By Temperature Thresholds:
10 Years as a Period

(a) GDD above 29 ◦C (b) GDD above 30 ◦C

(c) GDD above 31 ◦C (d) GDD above 32 ◦C
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Figure B.5: Marginal Impacts of Extreme Temperatures on Soybean Yields By Temperature
Thresholds: 5 Years as a Period

(a) GDD above 29 ◦C (b) GDD above 28 ◦C

(c) GDD above 29 ◦C (d) GDD above 30 ◦C

66



Figure B.6: Marginal Impacts of Extreme Temperatures on Soybean Yields By Temperature
Thresholds: 10 Years as a Period

(a) GDD above 29 ◦C (b) GDD above 28 ◦C

(c) GDD above 29 ◦C (d) GDD above 30 ◦C
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Figure B.7 and B.8 presents the evolutionary trajectory of marginal impacts of extreme high tem-

perature on crop yields. The extreme high temperature is measured by growing degree days above

four temperature thresholds di�erent from the proceeding thresholds. This is to avoid misspeci�cation

of the temperature threshold used in the growing degree days since we don't separately select the

threshold for the polynomial model introduced in equation (3). Figure B.7 is about corn and Figure

B.8 is about soybean.

Figure B.7: Marginal Impacts of Extreme Temperatures on Corn Yields By Temperature Thresholds:
Using Polynomial Model of Time Trend

(a) GDD above 29 ◦C (b) GDD above 28 ◦C

(c) GDD above 29 ◦C (d) GDD above 30 ◦C
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Figure B.8: Marginal Impacts of Extreme Temperatures on Soybean Yields By Temperature
Thresholds: Using Polynomial Model of Time Trend

(a) GDD above 27 ◦C (b) GDD above 28 ◦C

(c) GDD above 29 ◦C (d) GDD above 30 ◦C
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B.2 The E�ects of Agricultural Inputs on the Relationship Between Crop Yields and

Low Temperatures

Table B.3 and B.4 reports the e�ects of agricultural inputs on the relationship between yields and

low temperatures, which are measured by the interaction e�ects between temporal change in inputs

and low temperatures (GDD below the threshold) using the model in equation (6). Table B.5 re-

ports the robustness analysis of the interaction e�ects of inputs with low temperatures by adding the

temperature-by-year trend and interactions of economic controls with temperatures. The analysis on

the interaction e�ects of inputs with low temperatures is a placebo test of the moderation e�ects of

inputs on extreme temperature impacts. We do not expect that inputs can protect yields from low tem-

peratures. Insigni�cant interaction e�ects of inputs with low temperatures suggest that the adoption

of inputs is not coincidental with factors that determine the overall crop yields.

Table B.3: Interaction E�ects of Inputs Change with Low Temperatures for Corn Counties

(1) (2) (3) (4) (5)
Irrigation Machinery Fertilizer Electricity Combined

GDD below T 0.0053 -0.0016 -0.0113 -0.0016 -0.0039
(0.0095) (0.0089) (0.0097) (0.0082) (0.0102)

GDD below T × Irrigation (%) -0.0002 0.0110
(0.0130) (0.0132)

GDD below T × Machinery (Kw./Ha.) -0.0012 -0.0012
(0.0011) (0.0012)

GDD below T × Fertilizer (Tons of Ha.) 0.0487 0.0365
(0.0313) (0.0278)

GDD below T × Electricity (Kwh. per capita) -0.0049 -0.0047
(0.0053) (0.0050)

Observations 59255 53655 53645 58332 53475
R squared 0.8664 0.8444 0.8444 0.8423 0.8727
County FE Yes Yes Yes Yes Yes
Prov-Year FE Yes Yes Yes Yes Yes
Cty-Quadratic Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 28 ◦C 28 ◦C 28 ◦C 28 ◦C 28 ◦C
P threshold 51 cm 51 cm 51 cm 51 cm 51 cm

Note: The dependent variable is log corn yields. The change of all the agricultural inputs are calculated
with the di�erence in the mean values between the pre-1996 and post-1996 period. The low temperature
variable for interactions is the growing degree days below 28 ◦C. Precipitation and additional climate
variables are included. The standard error is clustered at county level and the regressions are weighted by
annual corn planted area. * p<0.1, ** p<0.05, *** p<0.01.
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Table B.4: Interaction E�ects of Inputs Change with Low Temperatures for Soybean Counties

(1) (2) (3) (4) (5)
Irrigation Machinery Fertilizer Electricity Combined

GDD below T 0.0335∗ 0.0332∗∗∗ 0.0324∗∗∗ 0.0301∗∗ 0.0401∗∗

(0.0175) (0.0119) (0.0118) (0.0119) (0.0174)

GDD below T × ∆ Irrigation (%) 0.0011 -0.0066
(0.0242) (0.0241)

GDD below T × ∆ Machinery (Kw./Ha.) -0.0010∗∗∗ -0.0003
(0.0003) (0.0018)

GDD below T × ∆ Fertilizer (Tons of Ha.) -0.0092∗∗∗ -0.0066
(0.0024) (0.0130)

GDD below T × ∆ Electricity (Kwh. per capita) 0.0202 0.0195
(0.0285) (0.0275)

Observations 54263 54287 54287 54252 54174
R squared 0.8175 0.8201 0.8201 0.8201 0.8211
County FE Yes Yes Yes Yes Yes
Prov-Year FE Yes Yes Yes Yes Yes
Cty-Quadratic Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 26 ◦C 26 ◦C 26 ◦C 26 ◦C 26 ◦C
P threshold 44 cm 44 cm 44 cm 44 cm 44 cm

Note: The dependent variable is log soybean yields. The change of all the agricultural inputs are calculated
with the di�erence in the mean values between the pre-1996 and post-1996 period. The low temperature
variable for interactions is the growing degree days below 26 ◦C. Precipitation and additional climate vari-
ables are included in the regressions. The standard error is clustered at county level and the regressions are
weighted by annual corn planted area. * p<0.1, ** p<0.05, *** p<0.01.
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Table B.5: E�ects of Agricultural Inputs on Mitigating Heat-related Losses of Corn Yields
�Using A Di�erent Measurement of Irrigation

(1) (2) (3) (4) (5)
Irrigation Machinery Fertilizer Electricity Combined

GDD above T -0.2223∗∗∗ -0.1564∗∗∗ -0.1535∗∗∗ -0.1400∗∗∗ -0.1952∗∗∗

(0.0308) (0.0280) (0.0267) (0.0254) (0.0324)

GDD above T × ∆ Irrigation Coverage (%) 0.2082∗∗∗ 0.1658∗∗∗

(0.0435) (0.0403)

GDD above T × ∆ Machinery Power (Kw./Ha.) 0.0021 0.0009
(0.0017) (0.0018)

GDD above T × ∆ Fertilizer (Tons /Ha.) 0.0455 0.0209
(0.0431) (0.0477)

GDD above T × ∆ Electricity (Kwh. per capita) 0.0231∗ 0.0226∗

(0.0135) (0.0131)

Observations 56054 56124 56269 54167 51587
R squared 0.8437 0.8690 0.8434 0.8395 0.8690
County Fixed E�ect Yes Yes Yes Yes Yes
Prov-Year Fixed E�ect Yes Yes Yes Yes Yes
County Quadratic Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 28 ◦C 28 ◦C 28 ◦C 28 ◦C 28 ◦C
P threshold 51 cm 51 cm 51 cm 51 cm 51 cm

Note: The irrigation coverage is measured by e�ective irrigated area over total planted area, which is the only di�er-
ence to Table 7. Each column corresponds to a regression in which an agricultural input is interacted with extreme
temperature measured by the annual GDD above the endogenous threshold. The regression equation is speci�ed by
equation (5). Only coe�cients on GDD above the threshold and relevant interactions are reported in the table. All the
regressions are weighted by annual planted area of corn. Only coe�cients on GDD above the threshold and relevant
interactions are reported but GDD below the threshold, precipitation and additional climate variables are included in
the regressions. * p<0.1, ** p<0.05, *** p<0.01.

72



Table B.6: E�ects of Agricultural Inputs on Mitigating Heat-related Losses of Soybean Yields
�Using A Di�erent Measurement of Irrigation

(1) (2) (3) (4) (5)
Irrigation Machinery Fertilizer Electricity Combined

GDD above T -0.1752∗∗∗ -0.1266∗∗∗ -0.1142∗∗∗ -0.1181∗∗∗ -0.1670∗∗∗

(0.0351) (0.0231) (0.0236) (0.0233) (0.0374)

GDD above T × ∆ Irrigation Coverage (%) 0.1118∗∗ 0.0855∗∗

(0.0544) (0.0415)

GDD above T × ∆ Machinery Power (Kw./Ha.) -0.0002∗∗∗ 0.0036
(0.0001) (0.0028)

GDD above T × ∆ Fertilizer (Tons /Ha.) -0.0019∗∗∗ -0.0290∗

(0.0004) (0.0153)

GDD above T × b57 -0.0035 -0.0036
(0.0029) (0.0029)

Observations 51314 51602 51454 49175 46668
R squared 0.8220 0.8181 0.7858 0.8171 0.8217
County Fixed E�ect Yes Yes Yes Yes Yes
Prov-Year Fixed E�ect Yes Yes Yes Yes Yes
County Quadratic Trend Yes Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered Clustered
T threshold 26 ◦C 26 ◦C 26 ◦C 26 ◦C 26 ◦C
P threshold 44 cm 44 cm 44 cm 44 cm 44 cm

Note: The irrigation coverage is measured by e�ective irrigated area over total planted area, which is the only di�er-
ence to Table 8. Each column corresponds to a regression in which an agricultural input is interacted with extreme
temperature measured by the annual GDD above the endogenous threshold. The regression equation is speci�ed by
equation (6). Only coe�cients on GDD above the threshold and relevant interactions are reported in the table. All
the regressions are weighted by annual planted area of soybean. Only coe�cients on GDD above the threshold and
relevant interactions are reported but GDD below the threshold, precipitation and additional climate variables are
included in the regressions. * p<0.1, ** p<0.05, *** p<0.01.
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Table B.7: Robustness Analysis of the Interaction E�ects of Agricultural Inputs with Low
Temperatures for Corn and Soybean

(1) (2) (3) (4)
Corn Corn Soybean Soybean

GDD below T × ∆ Irrigation 0.0107 0.0074 -0.0073 0.0316
(0.0135) (0.0159) (0.0243) (0.0269)

GDD below T × ∆ Machinery -0.0011 -0.0013 -0.0003 -0.0009
(0.0012) (0.0012) (0.0018) (0.0019)

GDD below T × ∆ Fertilizer 0.0383 0.0386 -0.0069 -0.0029
(0.0282) (0.0346) (0.0130) (0.0134)

GDD below T × ∆ Electricity -0.0047 -0.0076 0.0196 0.0283
(0.0050) (0.0052) (0.0275) (0.0306)

∆ GDP × Temperature No Yes No Yes
∆ (Cargo by Road) × Temperature No Yes No Yes
Temperature × Year Yes Yes Yes Yes

Observations 53475 37617 54174 40178
R squared 0.8727 0.8601 0.8211 0.8176
County FE Yes Yes Yes Yes
Prov-Year FE Yes Yes Yes Yes
Cty-Quadratic Trend Yes Yes Yes Yes
Std. Error Clustered Clustered Clustered Clustered
T threshold 28 ◦C 28 ◦C 26 ◦C 26 ◦C
P threshold 51 cm 51 cm 44 cm 44 cm

Note: This table presents the robustness analysis on the interaction e�ects of agri-
cultural inputs with low temperatures. Each column is from a separate regression
using di�erent endogeneous controls. The dependent variable is log crop yields.
The agricultural inputs, local GDP and cargo amount by road are measured with
the di�erence in the mean values between the pre-1996 and post-1996 period. The
GDP and cargo amount are in the prefecture level. The temperature variables
used for interactions are the growing degree days below the thresholds. Precipita-
tion and additional climate variables are included in the regressions. The standard
error is clustered at county level and the regressions are weighted by annual corn
and soybean planted area. * p<0.1, ** p<0.05, *** p<0.01.
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